声音识别|4. 构建模型

数据集和代码均已上传到Github中,欢迎大家下载使用。
Github地址:https://github.com/JasonZhang156/Sound-Recognition-Tutorial
如果这个教程对您有所帮助,请不吝贡献您的小星星Q^Q.
构建模型
【声音识别|4. 构建模型】本节使用keras搭建一个简单的CNN模型。该CNN模型包括3个卷积层、3个池化层、2个全连接层,中间层激活函数使用ReLU,最后一层使用softmax,每个卷积层后使用 Batch Normalization加速训练。优化器使用SGD,损失函数使用交叉熵(Cross Entropy)。模型详细配置如下:
声音识别|4. 构建模型
文章图片

Keras实现代码如下:

# -*- coding: utf-8 -*- """ @author: Jason Zhang @github: https://github.com/JasonZhang156/Sound-Recognition-Tutorial """from keras.layers import Input from keras.layers import Conv2D, MaxPool2D, Dense, Dropout, BatchNormalization, Activation, GlobalAvgPool2D from keras.models import Model from keras import optimizers from keras.utils import plot_modeldef CNN(input_shape=(60,65,1), nclass=10): """ build a simple cnn model using keras with TensorFlow backend. :param input_shape: input shape of network, default as (60,65,1) :param nclass: numbers of class(output shape of network), default as 10 :return: cnn model """ input_ = Input(shape=input_shape)# Conv1 x = Conv2D(64, kernel_size=(3, 3), strides=(1, 1), padding='same')(input_) x = BatchNormalization()(x) x = Activation('relu')(x) x = MaxPool2D(pool_size=(2, 2), strides=(2, 2))(x)# Conv2 x = Conv2D(128, kernel_size=(3, 3), strides=(1, 1), padding='same')(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = MaxPool2D(pool_size=(2, 2), strides=(2, 2))(x)# Conv3 x = Conv2D(256, kernel_size=(3, 3), strides=(1, 1), padding='same')(x) x = BatchNormalization()(x) x = Activation('relu')(x) x = MaxPool2D(pool_size=(2, 2), strides=(2, 2))(x)# GAP x = GlobalAvgPool2D()(x) # Dense_1 x = Dense(256, activation='relu')(x) x = Dropout(0.5)(x) # Dense_2 output_ = Dense(nclass, activation='softmax')(x)model = Model(inputs=input_, outputs=output_) # 输出模型的参数信息 model.summary() # 配置模型训练过程 sgd = optimizers.sgd(lr=0.01, momentum=0.9, nesterov=True)# 优化器为SGD model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])# 交叉熵为cross entropyreturn modelif __name__ == '__main__': model = CNN() plot_model(model, './image/cnn.png')# 保存模型图

上述代码包含在Github中的models.py文件中。

    推荐阅读