机器学习算法系列(九)-多分类对数几率回归算法(Multinomial Logistic Regression)

阅读本文需要的背景知识点:对数几率回归算法、一丢丢编程知识
一、引言 ??前面介绍了对数几率回归算法,该算法叫做回归算法,但其实是用来处理分类问题,将数据集分为了两类,用0、1或者是-1、1来表示。现实中不仅仅有二分类问题,同时也有很多是例如识别手写数字0~9等这种多分类的问题,下面我们就来介绍下多分类的对数几率回归算法1(Multinomial Logistic Regression Algorithm)
二、模型介绍 ??多分类可以通过对二分类进行推广来得到,通过一些策略,可以用二分类器来解决多分类的问题。常用的策略有:一对一(One vs. One/OvO)、一对其他(One vs. Rest/OvR)、多对多(Many vs. Many/MvM)

??例如有如下数据集分类:
机器学习算法系列(九)-多分类对数几率回归算法(Multinomial Logistic Regression)
文章图片

一对一(One vs. One/OvO)

??一对一的策略是每次只处理两个类别,将全部N个类别两两配对,会产生 N(N-1)/2 个二分类的任务。

??如下面的表格所示,一共有苹果、梨子、香蕉、桃子这四种分类,会产生六种不同的结果,所以需要六个不同的分类器。需要预测新的是哪一类时,只需通过这些分类器的结果,其中预测最多的分类就是最终的分类结果。
【机器学习算法系列(九)-多分类对数几率回归算法(Multinomial Logistic Regression)】机器学习算法系列(九)-多分类对数几率回归算法(Multinomial Logistic Regression)
文章图片

一对其他(One vs. Rest/OvR)

??一对其他的策略是将一个类别作为正例,其余所有的类别当成反例,全部N个类别会产生N个二分类的任务。

??如下面的表格所示,一共有苹果、梨子、香蕉、桃子这四种分类,会产生四种不同的结果,所以需要四个不同的分类器。需要预测新的是哪一类时,只需选择分类器预测结果为正的结果作为最终分类结果,若有多个分类器都预测为正,则选择权重最大的分类器的分类结果。
机器学习算法系列(九)-多分类对数几率回归算法(Multinomial Logistic Regression)
文章图片

多对多(Many vs. Many/MvM)

??多对多的策略是将若干类别作为正例、若干类别作为反例,通过一定的编码,实现多分类的问题。常见的主要有二元码与三元码。二元码将每种类型看成正例或者反例,三元码除了正反例以外有一个停用类,即分类时不使用。

??二元码:如下面的表格所示,一共有苹果、梨子、香蕉、桃子这四种分类,这里用了五个分类器来编码结果,如 h1 将苹果、香蕉、桃子作为反例,将梨子作为正例。需要预测新的是哪一类时,通过五个分类器的结果与原始结果比较,这里使用海明距离,即结果有多少不一致的数量,距离最小的分类就是最终分类结果。
机器学习算法系列(九)-多分类对数几率回归算法(Multinomial Logistic Regression)
文章图片

??三元码:如下面的表格所示,一共有苹果、梨子、香蕉、桃子这四种分类,这里用了七个分类器来编码结果,如 h2 将苹果作为反例,将香蕉、桃子作为正例,不使用梨子的分类。需要预测新的是哪一类时,通过这七个分类器的结果与原始结果比较,一样使用海明距离,距离最小的分类就是最终分类结果。
机器学习算法系列(九)-多分类对数几率回归算法(Multinomial Logistic Regression)
文章图片

??可以看到OvO、OvR是MvM的特殊情况。OvO相对OvR来说,需要更多的分类器模型,所以其存储与预测阶段的开销会更大,但在训练阶段使用的数据量更小,相对来说这部分开销会小一些。MvM这种编码的方式具备一定的纠错能力,某个分类器的结果错误,可能对最后的分类结果不会有影响,所以这种方式叫做纠错输出码(Error Correcting Output Codes/ECOC)
多分类对数几率回归

??多分类对数几率回归与二分类的对数几率回归不同的是,不再使用逻辑函数(Logistic Function),而是使用Softmax函数2(Softmax Function),该函数可以看作是对逻辑函数的一种推广。

??Softmax函数能将一个含任意实数的K维向量z“压缩”到另一个K维实向量σ(z)中,使得每一个元素的范围都在(0,1)之间,并且所有元素的和为1。
$$ \sigma(z)_{j}=\frac{e^{z_{j}}}{\sum_{i=1}^{K} e^{z_{i}}} \quad(j=1, \cdots, K) $$
??假设有K种分类,可以将每种分类的条件概率写成Softmax函数的形式,即将每个分类的线性组合结果带入到Softmax函数中:
$$ P(y=j \mid x, W)=\frac{e^{W_{j}^{T} x}}{\sum_{i=1}^{K} e^{W_{i}^{T} x}} \quad(j=1, \cdots, K) $$
??其假设函数为:
$$ h(x)=\left[\begin{array}{c} P(y=1 \mid x, W) \\ P(y=2 \mid x, W) \\ \cdots \\ P(y=K \mid x, W) \end{array}\right]=\frac{1}{\sum_{i=1}^{K} e^{W_{i}^{T} x}}\left[\begin{array}{c} e^{W_{1}^{T} x} \\ e^{W_{2}^{T} x} \\ \cdots \\ e^{W_{K}^{T} x} \end{array}\right] $$
??由于多分类对数几率回归使用了Softmax函数,所以该回归算法有时也被称为Softmax回归(Softmax Regression)
多分类对数几率回归的代价函数

??与二分类对数几率回归的代价函数一样,也是使用最大似然函数的对数形式,首先写出其似然函数:
$$ L(W)=\prod_{i=1}^{N} \prod_{j=1}^{K}\left(\frac{e^{W j^{T} X_{i}}}{\sum_{k=1}^{K} e^{W_{k}^{T} X_{i}}}\right)^{1_{j}\left(y_{i}\right)} $$
??其中指数部分为指示函数(indicator function),代表当第i个y的值等于分类j时函数返回1,不等于时返回0,如下所示:
$$ 1_A(x) = \left\{\begin{matrix} 1 & x \in A\\ 0 & x \notin A \end{matrix}\right. $$
??然后对似然函数取对数后加个负号,就是多分类对数几率回归的代价函数了,我们的目标依然是最小化该代价函数:
$$ \operatorname{Cost}(W)=-\sum_{i=1}^{N} \sum_{j=1}^{K} 1_{j}\left(y_{i}\right) \ln \left(\frac{e^{W j^{T} X_{i}}}{\sum_{k=1}^{K} e^{W_{k}^{T} X_{i}}}\right) $$
??该代价函数也是凸函数,依然可以使用梯度下降法进行最小化的优化。
三、原理证明 多分类对数几率回归的代价函数为凸函数

??同前面的证明一样,只需证明当函数的黑塞矩阵是半正定的,则该函数就为凸函数。

(1)代价函数对W求梯度,推导时需要注意下标

(2)可以将代价函数中的第二个连加操作拆成两个式子,前面一个为连加中的第j个式子,后面为连加项但不包括第j项,这时的下标用l表示

(3)将除法的对数写成对数的减法

(4)第一个连加操作对求梯度不影响,直接写到最外层。指示函数对求梯度也没有影响,利用求导公式分别对后面几项求梯度

(5)整理后可以看到后面两项又可以合成同一个连加

(6)由于y的取值必然会在1-K中,指示函数的从1-K连加必然等于1
$$ \begin{aligned} \frac{\partial \operatorname{Cost}(W)}{\partial W_{j}} &=\frac{\partial}{\partial W_{j}}\left(-\sum_{i=1}^{N} \sum_{j=1}^{K} 1_{j}\left(y_{i}\right) \ln \frac{e^{W_{j}^{T} X_{i}}}{\sum_{k=1}^{K} e^{W_{k}^{T} X_{i}}}\right) & (1) \\ &=\frac{\partial}{\partial W_{j}}\left(-\sum_{i=1}^{N}\left(1_{j}\left(y_{i}\right) \ln \frac{e^{W_{j}^{T} X_{i}}}{\sum_{k=1}^{K} e^{W_{k}^{T} X_{i}}}+\sum_{l \neq j}^{K} 1_{l}\left(y_{i}\right) \ln \frac{e^{W_{l}^{T} X_{i}}}{\sum_{k=1}^{K} e^{W_{k}^{T} X_{i}}}\right)\right) & (2) \\ &=\frac{\partial}{\partial W_{j}}\left(-\sum_{i=1}^{N}\left(1_{j}\left(y_{i}\right)\left(W_{j}^{T} X_{i}-\ln \sum_{k=1}^{K} e^{W_{k}^{T} X_{i}}\right)+\sum_{l \neq j}^{K} 1_{l}\left(y_{i}\right)\left(W_{l}^{T} X_{i}-\ln \sum_{k=1}^{K} e^{W_{k}^{T} X_{i}}\right)\right)\right) & (3) \\ &=-\sum_{i=1}^{N}\left(1_{j}\left(y_{j}\right)\left(X_{i}-\frac{e^{W_{j}^{T} X_{i}} X_{i}}{\sum_{k=1}^{K} e^{W_{k}^{T} X_{i}}}\right)+\sum_{l \neq j}^{K} 1_{l}\left(y_{i}\right)\left(0-\frac{e^{W_{j}^{T} X_{i}} X_{i}}{\sum_{k=1}^{K} e^{W_{k}^{T} X_{i}}}\right)\right) & (4) \\ &=-\sum_{i=1}^{N}\left(X_{i}\left(1_{j}\left(y_{i}\right)-\sum_{j=1}^{K} 1_{j}\left(y_{i}\right) \frac{e^{W_{j}^{T} X_{i}}}{\sum_{k=1}^{K} e^{W_{k}^{T} X_{i}}}\right)\right) & (5) \\ &=-\sum_{i=1}^{N}\left(X_{i}\left(1_{j}\left(y_{i}\right)-\frac{e^{W_{j}^{T} X_{i}}}{\sum_{k=1}^{K} e^{W_{k}^{T} X_{i}}}\right)\right) & (6) \end{aligned} $$
(1)代价函数对W求黑塞矩阵

(2)第一项对W来说为常数,只需对第二项求导

(3)利用求导公式求出对应的导数

(4)整理结果,分子为连加中去掉第j项
$$ \begin{aligned} \frac{\partial^{2} \operatorname{Cost}(W)}{\partial W_{j} \partial W_{j}^{T}} &=\frac{\partial}{\partial W_{j}}\left(-\sum_{i=1}^{N}\left(X_{i}\left(1_{j}\left(y_{i}\right)-\frac{e^{W_{j}^{T} X_{i}}}{\sum_{k=1}^{K} e^{W_{k}^{T} X_{i}}}\right)\right)\right) & (1)\\ &=\sum_{i=1}^{N} \frac{\partial}{\partial W_{j}}\left(\frac{e^{W_{j}^{T} X_{i}}}{\sum_{k=1}^{K} e^{W_{k}^{T} X_{i}}} X_{i}\right) & (2)\\ &=\sum_{i=1}^{N} \frac{\sum_{k=1}^{K} e^{W_{k}^{T} X_{i}} e^{W_{j}^{T} X_{i}} X_{i}-e^{W_{j}^{T} X_{i}} e^{W_{j}^{T} X_{i}} X_{i}}{\left(\sum_{k=1}^{K} e^{W_{k}^{T} X_{i}}\right)^{2}} X_{i} & (3)\\ &=\sum_{i=1}^{N} \frac{\sum_{k \neq j}^{K} e^{W_{k}^{T} X_{i}} e^{W_{j}^{T} X_{i}}}{\left(\sum_{k=1}^{K} e^{W_{k}^{T} X_{i}}\right)^{2}} X_{i} X_{i}^{T} & (4) \end{aligned} $$
??同前面的证明,黑塞矩阵前面的常数必然大于零,则对应的黑塞矩阵矩阵为正定矩阵,说明其代价函数为凸函数,证毕。
对数几率回归是多分类对数几率回归的特例

(1)当K的值为2时,带入到多分类对数几率回归的假设函数

(2)将分子分母同时乘以e的-W1次幂

(3)e的零次幂为1,化简可得

(4)将W2-W1视为新的w,这时会发现假设函数就为二分类的对数几率回归的假设函数
$$ \begin{aligned} h(x) &=\frac{1}{e^{W_{1}^{T} x}+e^{W_{2}^{T} x}}\left[\begin{array}{c} e^{W_{1}^{T} x} \\ e^{W_{2}^{T} x} \end{array}\right] & (1)\\ &=\frac{1}{e^{0^{T} x}+e^{\left(W_{2}-W_{1}\right)^{T} x}}\left[\begin{array}{c} e^{0^{T} x} \\ e^{\left(W_{2}-W_{1}\right)^{T} x} \end{array}\right] & (2) \\ &=\frac{1}{1+e^{\left(W_{2}-W_{1}\right)^{T} x}}\left[\begin{array}{c} 1 \\ e^{\left(W_{2}-W_{1}\right)^{T} x} \end{array}\right] & (3) \\ &=\left[\begin{array}{c} \frac{1}{1+e^{\hat{w}^{T} x}} \\ \frac{e^{\hat{w}^{T} x}}{1+e^{\hat{w}^{T} x}} \end{array}\right] & (4) \end{aligned} $$
??对数几率回归是多分类对数几率回归在K=2时候的特例,也可以看到多分类对数几率回归的权重系数具有冗余的性质,即权重系数同时改变相同的值时,对最后的预测结果不影响。
四、代码实现 使用 Python 实现多分类对数几率回归算法(梯度下降法):

import numpy as npdef dcost(X, y, w): """ 多分类对数几率回归的代价函数的梯度 args: X - 训练数据集 y - 目标标签值 w - 权重系数 return: 代价函数的梯度 """ ds = np.zeros(w.shape) for i in range(X.shape[0]): c = np.sum(np.exp(w.dot(X[i]))) for j in range(w.shape[1]): a = 0 if j == y[i]: a = 1 b = np.exp(w[j].dot(X[i])) ds[j] = ds[j] - X[i] * (a - b / c) return dsdef direction(d): """ 更新的方向 args: d - 梯度 return: 更新的方向 """ return -ddef multinomialLogisticRegressionGd(X, y, max_iter=1000, tol=1e-4, step=1e-3): """ 多分类对数几率回归,使用梯度下降法(gradient descent) args: X - 训练数据集 y - 目标标签值 max_iter - 最大迭代次数 tol - 变化量容忍值 step - 步长 return: W - 权重系数 """ y_classes = np.unique(y) # 初始化 W 为零向量 W = np.zeros((len(y_classes), X.shape[1])) # 开始迭代 for it in range(max_iter): # 计算梯度 d = dcost(X, y, W) # 当梯度足够小时,结束迭代 if np.linalg.norm(x=d, ord=1) <= tol: break p = direction(d) # 更新权重系数 W W = W + step * p return W

五、第三方库实现 scikit-learn3 实现多分类对数几率回归:
from sklearn.linear_model import LogisticRegression# 初始化多分类对数几率回归器,无正则化 reg = LogisticRegression(penalty="none", multi_class="multinomial") # 拟合线性模型 reg.fit(X, y) # 权重系数 W = reg.coef_ # 截距 b = reg.intercept_

六、动画演示 ??下图展示了存在三种分类时的演示数据,其中红色表示标签值为0的样本、蓝色表示标签值为1的样本、绿色表示标签值为2的样本:
机器学习算法系列(九)-多分类对数几率回归算法(Multinomial Logistic Regression)
文章图片

??下图为使用梯度下降法拟合数据的结果,其中浅红色表示拟合后根据权重系数计算出预测值为0的部分,浅蓝色表示拟合后根据权重系数计算出预测值为1的部分,浅绿色表示拟合后根据权重系数计算出预测值为2的部分:
机器学习算法系列(九)-多分类对数几率回归算法(Multinomial Logistic Regression)
文章图片

七、思维导图 机器学习算法系列(九)-多分类对数几率回归算法(Multinomial Logistic Regression)
文章图片

八、参考文献
  1. https://en.wikipedia.org/wiki...
  2. https://en.wikipedia.org/wiki...
  3. https://scikit-learn.org/stab...
完整演示请点击这里
注:本文力求准确并通俗易懂,但由于笔者也是初学者,水平有限,如文中存在错误或遗漏之处,恳请读者通过留言的方式批评指正

本文首发于——AI导图,欢迎关注

    推荐阅读