【论文总结】Zero-Shot|【论文总结】Zero-Shot Semantic Segmentation
【【论文总结】Zero-Shot|【论文总结】Zero-Shot Semantic Segmentation】论文地址:https://arxiv.org/abs/1906.00817
代码:https://github.com/valeoai/ZS3
一、内容
文章图片
Step 0:首先使用数据集(完全不包含 Unseen Classes 的图片)训练 DeepLabv3+ 模型,得到的模型可以对只含有 Seen Classes 的图片进行分类,去掉训练好的 DeepLabv3+ 的最后一层分类层,将其变成一个特征提取器。将所有 Classes 输入到 w2c 模型,得到每个Class 对应的向量,将此向量连接到 ground-truth 中每个像素上,即每个像素都有其对应的类的向量。
Step 1:使用数据集(完全不包含 Unseen Classes 的图片)输入到 DeepLabv3+ 模型,得到特征图,根据 ground-truth 上的 Class 筛选出不同类别的特征,将每个类的特征作为 Label,对应类的 w2c 输出的向量作为输入,训练 GMMN 模型。
Step 2:使用完整数据集 (包含 Seen 和 Unseen Classes 的图片)输入到 DeepLabv3+ 模型,如果不包含 Unseen Classes,那么直接拿出特征图去训练最终的分类器,如果包含,则根据图片的 ground-truth 对应的类的向量一一生成特征,将不同类特征组合到一起,再去训练最终的分类器。
二、理解
1. 代码中将 Step 1 和 2 和在了一起,为了便于理解,把 Step 1 和 2 分开解释。
2. Step 2 中使用了两次包含 Unseen Classes 的图像和其 ground-truth。
- 在逐个对类的词向量生成特征时,用到了 ground-truth,根据 ground-truth 知道了类的总数、每个类的位置、以及对应的词向量。
- 在最终训练分类器时,也用到了含有 Unseen Class 的图像的 ground-truth。
- 也可以直接忽略 DeepLab 生成的特征图,直接根据 Seen 和 Unseen 标签随机生成图片,利用类的词向量通过 GMMN 生成特征,结合生成的图片的 Label 去训练最终分类器。
推荐阅读
- 宽容谁
- 我要做大厨
- 增长黑客的海盗法则
- 画画吗()
- 2019-02-13——今天谈梦想()
- 远去的风筝
- 三十年后的广场舞大爷
- 叙述作文
- 20190302|20190302 复盘翻盘
- 学无止境,人生还很长