avro示例
【avro示例】avro是一个序列化框架特点是
- 丰富的数据结构
- 使用快速的压缩二进制数据格式
- 自包含文件,模式和数据
- RPC
- 简单的动态语言结合功能,Avro 和动态语言结合后,读写数据文件和使用 RPC 协议都不需要生成代码,而代码生成作为一种可选的优化只值得在静态类型语言中实现
org.apache.avro
avro
1.9.2
1. 不生成code示例 1.1 编写avsc文件User.avsc
{
"namespace":"com.example.person",
"type":"record",
"name":"User",
"fields":[
{"name":"name", "type":"string"},
{"name":"id", "type":"int"},
{"name":"salary","type":"int"},
{"name":"age","type":"int"},
{"name":"address","type":"string"}
]
}
1.2 按User.avsc进行序列化,写文件
public static void serializing() throws IOException {
Schema schema = new Schema.Parser().parse(new File("D:\\2020\\avro-test\\src\\main\\avro\\User.avsc"));
File file = new File("D:\\avro-test\\src\\main\\avro\\User.avro");
DatumWriter datumWriter = new GenericDatumWriter(schema);
DataFileWriter dataFileWriter = new DataFileWriter(datumWriter);
dataFileWriter.create(schema, file);
GenericRecord a = new GenericData.Record(schema);
a.put("name", "zhangsan");
a.put("id", 1);
a.put("salary", 1000);
a.put("age", 27);
a.put("address", "shanghai tangzheng");
dataFileWriter.append(a);
a = new GenericData.Record(schema);
a.put("name", "lisi");
a.put("id", 2);
a.put("salary", 2000);
a.put("age", 29);
a.put("address", "shanghai tangzheng");
dataFileWriter.append(a);
dataFileWriter.close();
}
1.3 按User.avsc读取序列化的文件
public static void deserializing() throws IOException {
Schema schema = new Schema.Parser().parse(new File("D:\\avro-test\\src\\main\\avro\\User.avsc"));
File file = new File("D:\\avro-test\\src\\main\\avro\\User.avro");
DatumReader datumReader = new GenericDatumReader(schema);
DataFileReader dataFileReader = new DataFileReader(file, datumReader);
GenericRecord user = null;
while(dataFileReader.hasNext()) {
user = dataFileReader.next();
System.out.println(user);
}
dataFileReader.close();
}
输出如下
{"name": "zhangsan", "id": 1, "salary": 1000, "age": 27, "address": "shanghai tangzheng"}
{"name": "lisi", "id": 2, "salary": 2000, "age": 29, "address": "shanghai tangzheng"}
2. 生成code示例 2.1 编写avsc文件User.avsc
{
"namespace":"com.example.person",
"type":"record",
"name":"User",
"fields":[
{"name":"name", "type":"string"},
{"name":"id", "type":"int"},
{"name":"salary","type":"int"},
{"name":"age","type":"int"},
{"name":"address","type":"string"}
]
}
2.2 调用avro-tools生成java代码
java -jar avro-tools-1.9.2.jar compile schema User.avsc ouput
生成的java类 User位于output/com/example/person目录下。
2.3 序列化文件
public static void testSerial() throws IOException {
DatumWriter userDatumWriter = new SpecificDatumWriter(User.class);
DataFileWriter dataFileWriter = new DataFileWriter(userDatumWriter);
dataFileWriter.create(User.SCHEMA$, new File("D:\\2020\\src\\main\\avro\\User.avro));
User a = new User();
a.setName("zhangsan");
a.setId(1);
a.setSalary(1000);
a.setAge(28);
a.setAddress("shanghai pudong");
dataFileWriter.append(a);
a = new User();
a.setName("lisi");
a.setId(2);
a.setSalary(2000);
a.setAge(32);
a.setAddress("shanghai pudong");
dataFileWriter.append(a);
a = new User();
a.setName("mawu");
a.setId(3);
a.setSalary(3000);
a.setAge(38);
a.setAddress("shanghai pudong");
dataFileWriter.append(a);
dataFileWriter.close();
System.out.println("ok...");
}
2.4 反序列化文件
public static void testDeserial() throws IOException {
DatumReader reader = new SpecificDatumReader(User.class);
DataFileReader dataFileReader = new DataFileReader(new File(path), reader);
User user = null;
while(dataFileReader.hasNext()) {
user = dataFileReader.next();
System.out.println(user);
}
}
输出结果如下
{"name": "zhangsan", "id": 1, "salary": 1000, "age": 28, "address": "shanghai pudong"}
{"name": "lisi", "id": 2, "salary": 2000, "age": 32, "address": "shanghai pudong"}
{"name": "mawu", "id": 3, "salary": 3000, "age": 38, "address": "shanghai pudong"}
推荐阅读
- 宽容谁
- 我要做大厨
- 增长黑客的海盗法则
- 画画吗()
- 2019-02-13——今天谈梦想()
- 远去的风筝
- 三十年后的广场舞大爷
- 叙述作文
- 20190302|20190302 复盘翻盘
- 学无止境,人生还很长