Voc格式的数据集中图像增广的方法
【Voc格式的数据集中图像增广的方法】来自于博客
https://blog.csdn.net/qq_36852276/article/details/102539858
非常感谢
给自己做的笔记,在Jupyter notebook里实现,在过程中需要下载一些库,例如
pip install imgaug
pip install Augmentor
pip install --user scikit-image==0.16.2
该实验是对图像进行剪裁、平移、旋转、加噪、提亮、cutout(家黑点);并且把目标检测的图片所对应的xml文件进行相应的修改,例如像剪裁、平移、旋转、cutout的xml文件里面的目标坐标就需要改变
注意:
1)第一个程序中的方法show_pic把显示图片的功能给注释了;需要显示了再打开注释
2)第四个程序中只需要写入原始的xml和jpg文件夹的路径,以及增广以后的图片和xml文件的位置,只需要在方法里修改即可。
3)另外生成的图片是使用检测框检测过的,每个图片都有检测框包围
# -*- coding=utf-8 -*-# 包括:
#1. 裁剪(需改变bbox)
#2. 平移(需改变bbox)
#3. 改变亮度
#4. 加噪声
#5. 旋转角度(需要改变bbox)
#6. 镜像(需要改变bbox)
#7. cutout
# 注意:
#random.seed(),相同的seed,产生的随机数是一样的!!import time
import random
import cv2
import os
import math
import numpy as np
from skimage.util import random_noise
from skimage import exposure
import sys#显示带标签显示的图片
def show_pic(img, bboxes=None,labels=None):
'''
输入:
img:图像array
bboxes:图像的所有boudning box list, 格式为[[x_min, y_min, x_max, y_max]....]
names:每个box对应的名称
'''
#cv2.imwrite('./1.jpg', img)
#img = cv2.imread('./1.jpg')
img=img/255
for i in range(len(bboxes)):
bbox = bboxes[i]
x_min = bbox[0]
y_min = bbox[1]
x_max = bbox[2]
y_max = bbox[3]
cv2.rectangle(img,(int(x_min),int(y_min)),(int(x_max),int(y_max)),(0,255,0),3)
cv2.putText(img,labels[i],(int(x_min),int(y_min)),cv2.FONT_HERSHEY_SIMPLEX,0.8,(0,0,255),2)
cv2.namedWindow('pic', 0)# 1表示原图
cv2.moveWindow('pic', 0, 0)
cv2.resizeWindow('pic', 1200,800)# 可视化的图片大小
cv2.imshow('pic', img)
if cv2.waitKey(1)==ord('q'):
cv2.destroyAllWindows()
sys.exit()
#cv2.destroyAllWindows()
#os.remove('./1.jpg')# 图像均为cv2读取
class DataAugmentForObjectDetection():
def __init__(self, rotation_rate=0.5, max_rotation_angle=30,
crop_rate=0.5, shift_rate=0.5, change_light_rate=0.5,
add_noise_rate=0.5, flip_rate=0.5,
cutout_rate=0.5, cut_out_length=50, cut_out_holes=1, cut_out_threshold=0.5):
self.rotation_rate = rotation_rate
self.max_rotation_angle = max_rotation_angle
self.crop_rate = crop_rate
self.shift_rate = shift_rate
self.change_light_rate = change_light_rate
self.add_noise_rate = add_noise_rate
self.flip_rate = flip_rate
self.cutout_rate = cutout_rateself.cut_out_length = cut_out_length
self.cut_out_holes = cut_out_holes
self.cut_out_threshold = cut_out_threshold# 加噪声
def _addNoise(self, img):
'''
输入:
img:图像array
输出:
加噪声后的图像array,由于输出的像素是在[0,1]之间,所以得乘以255
'''
# random.seed(int(time.time()))
# return random_noise(img, mode='gaussian', seed=int(time.time()), clip=True)*255
return random_noise(img, mode='gaussian', clip=True)*255# 调整亮度
def _changeLight(self, img):
# random.seed(int(time.time()))
flag = random.uniform(0.5, 1.5) #flag>1为调暗,小于1为调亮
return exposure.adjust_gamma(img, flag)# cutout
def _cutout(self, img, bboxes, length=100, n_holes=1, threshold=0.5):
'''
原版本:https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py
Randomly mask out one or more patches from an image.
Args:
img : a 3D numpy array,(h,w,c)
bboxes : 框的坐标
n_holes (int): Number of patches to cut out of each image.
length (int): The length (in pixels) of each square patch.
'''def cal_iou(boxA, boxB):
'''
boxA, boxB为两个框,返回iou
boxB为bouding box
'''# determine the (x, y)-coordinates of the intersection rectangle
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])if xB <= xA or yB <= yA:
return 0.0# compute the area of intersection rectangle
interArea = (xB - xA + 1) * (yB - yA + 1)# compute the area of both the prediction and ground-truth
# rectangles
boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the interesection area
# iou = interArea / float(boxAArea + boxBArea - interArea)
iou = interArea / float(boxBArea)# return the intersection over union value
return iou# 得到h和w
if img.ndim == 3:
h,w,c = img.shape
else:
_,h,w,c = img.shapemask = np.ones((h,w,c), np.float32)for n in range(n_holes):chongdie = True#看切割的区域是否与box重叠太多while chongdie:
y = np.random.randint(h)
x = np.random.randint(w)y1 = np.clip(y - length // 2, 0, h)#numpy.clip(a, a_min, a_max, out=None), clip这个函数将将数组中的元素限制在a_min, a_max之间,大于a_max的就使得它等于 a_max,小于a_min,的就使得它等于a_min
y2 = np.clip(y + length // 2, 0, h)
x1 = np.clip(x - length // 2, 0, w)
x2 = np.clip(x + length // 2, 0, w)chongdie = False
for box in bboxes:
if cal_iou([x1,y1,x2,y2], box) > threshold:
chongdie = True
breakmask[y1: y2, x1: x2, :] = 0.# mask = np.expand_dims(mask, axis=0)
img = img * maskreturn img# 旋转
def _rotate_img_bbox(self, img, bboxes, angle=5, scale=1.):
'''
参考:https://blog.csdn.net/u014540717/article/details/53301195crop_rate
输入:
img:图像array,(h,w,c)
bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
angle:旋转角度
scale:默认1
输出:
rot_img:旋转后的图像array
rot_bboxes:旋转后的boundingbox坐标list
'''
#---------------------- 旋转图像 ----------------------
w = img.shape[1]
h = img.shape[0]
# 角度变弧度
rangle = np.deg2rad(angle)# angle in radians
# now calculate new image width and height
nw = (abs(np.sin(rangle)*h) + abs(np.cos(rangle)*w))*scale
nh = (abs(np.cos(rangle)*h) + abs(np.sin(rangle)*w))*scale
# ask OpenCV for the rotation matrix
rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale)
# calculate the move from the old center to the new center combined
# with the rotation
rot_move = np.dot(rot_mat, np.array([(nw-w)*0.5, (nh-h)*0.5,0]))
# the move only affects the translation, so update the translation
# part of the transform
rot_mat[0,2] += rot_move[0]
rot_mat[1,2] += rot_move[1]
# 仿射变换
rot_img = cv2.warpAffine(img, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4)#---------------------- 矫正bbox坐标 ----------------------
# rot_mat是最终的旋转矩阵
# 获取原始bbox的四个中点,然后将这四个点转换到旋转后的坐标系下
rot_bboxes = list()
for bbox in bboxes:
xmin = bbox[0]
ymin = bbox[1]
xmax = bbox[2]
ymax = bbox[3]
point1 = np.dot(rot_mat, np.array([(xmin+xmax)/2, ymin, 1]))
point2 = np.dot(rot_mat, np.array([xmax, (ymin+ymax)/2, 1]))
point3 = np.dot(rot_mat, np.array([(xmin+xmax)/2, ymax, 1]))
point4 = np.dot(rot_mat, np.array([xmin, (ymin+ymax)/2, 1]))
# 合并np.array
concat = np.vstack((point1, point2, point3, point4))
# 改变array类型
concat = concat.astype(np.int32)
# 得到旋转后的坐标
rx, ry, rw, rh = cv2.boundingRect(concat)
rx_min = rx
ry_min = ry
rx_max = rx+rw
ry_max = ry+rh
# 加入list中
rot_bboxes.append([rx_min, ry_min, rx_max, ry_max])return rot_img, rot_bboxes# 裁剪
def _crop_img_bboxes(self, img, bboxes):
'''
裁剪后的图片要包含所有的框
输入:
img:图像array
bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
输出:
crop_img:裁剪后的图像array
crop_bboxes:裁剪后的bounding box的坐标list
'''
#---------------------- 裁剪图像 ----------------------
w = img.shape[1]
h = img.shape[0]
x_min = w#裁剪后的包含所有目标框的最小的框
x_max = 0
y_min = h
y_max = 0
for bbox in bboxes:
x_min = min(x_min, bbox[0])
y_min = min(y_min, bbox[1])
x_max = max(x_max, bbox[2])
y_max = max(y_max, bbox[3])d_to_left = x_min#包含所有目标框的最小框到左边的距离
d_to_right = w - x_max#包含所有目标框的最小框到右边的距离
d_to_top = y_min#包含所有目标框的最小框到顶端的距离
d_to_bottom = h - y_max#包含所有目标框的最小框到底部的距离#随机扩展这个最小框
crop_x_min = int(x_min - random.uniform(0, d_to_left))
crop_y_min = int(y_min - random.uniform(0, d_to_top))
crop_x_max = int(x_max + random.uniform(0, d_to_right))
crop_y_max = int(y_max + random.uniform(0, d_to_bottom))# 随机扩展这个最小框 , 防止别裁的太小
# crop_x_min = int(x_min - random.uniform(d_to_left//2, d_to_left))
# crop_y_min = int(y_min - random.uniform(d_to_top//2, d_to_top))
# crop_x_max = int(x_max + random.uniform(d_to_right//2, d_to_right))
# crop_y_max = int(y_max + random.uniform(d_to_bottom//2, d_to_bottom))#确保不要越界
crop_x_min = max(0, crop_x_min)
crop_y_min = max(0, crop_y_min)
crop_x_max = min(w, crop_x_max)
crop_y_max = min(h, crop_y_max)crop_img = img[crop_y_min:crop_y_max, crop_x_min:crop_x_max]#---------------------- 裁剪boundingbox ----------------------
#裁剪后的boundingbox坐标计算
crop_bboxes = list()
for bbox in bboxes:
crop_bboxes.append([bbox[0]-crop_x_min, bbox[1]-crop_y_min, bbox[2]-crop_x_min, bbox[3]-crop_y_min])return crop_img, crop_bboxes# 平移
def _shift_pic_bboxes(self, img, bboxes):
'''
参考:https://blog.csdn.net/sty945/article/details/79387054
平移后的图片要包含所有的框
输入:
img:图像array
bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
输出:
shift_img:平移后的图像array
shift_bboxes:平移后的bounding box的坐标list
'''
#---------------------- 平移图像 ----------------------
w = img.shape[1]
h = img.shape[0]
x_min = w#裁剪后的包含所有目标框的最小的框
x_max = 0
y_min = h
y_max = 0
for bbox in bboxes:
x_min = min(x_min, bbox[0])
y_min = min(y_min, bbox[1])
x_max = max(x_max, bbox[2])
y_max = max(y_max, bbox[3])d_to_left = x_min#包含所有目标框的最大左移动距离
d_to_right = w - x_max#包含所有目标框的最大右移动距离
d_to_top = y_min#包含所有目标框的最大上移动距离
d_to_bottom = h - y_max#包含所有目标框的最大下移动距离x = random.uniform(-(d_to_left-1) / 3, (d_to_right-1) / 3)
y = random.uniform(-(d_to_top-1) / 3, (d_to_bottom-1) / 3)M = np.float32([[1, 0, x], [0, 1, y]])#x为向左或右移动的像素值,正为向右负为向左;
y为向上或者向下移动的像素值,正为向下负为向上
shift_img = cv2.warpAffine(img, M, (img.shape[1], img.shape[0]))#---------------------- 平移boundingbox ----------------------
shift_bboxes = list()
for bbox in bboxes:
shift_bboxes.append([bbox[0]+x, bbox[1]+y, bbox[2]+x, bbox[3]+y])return shift_img, shift_bboxes# 镜像
def _filp_pic_bboxes(self, img, bboxes):
'''
参考:https://blog.csdn.net/jningwei/article/details/78753607
平移后的图片要包含所有的框
输入:
img:图像array
bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
输出:
flip_img:平移后的图像array
flip_bboxes:平移后的bounding box的坐标list
'''
# ---------------------- 翻转图像 ----------------------
import copy
flip_img = copy.deepcopy(img)
if random.random() < 0.5:#0.5的概率水平翻转,0.5的概率垂直翻转
horizon = True
else:
horizon = False
h,w,_ = img.shape
if horizon: #水平翻转
flip_img =cv2.flip(flip_img, 1)#1是水平,-1是水平垂直
else:
flip_img = cv2.flip(flip_img, 0)# ---------------------- 调整boundingbox ----------------------
flip_bboxes = list()
for box in bboxes:
x_min = box[0]
y_min = box[1]
x_max = box[2]
y_max = box[3]
if horizon:
flip_bboxes.append([w-x_max, y_min, w-x_min, y_max])
else:
flip_bboxes.append([x_min, h-y_max, x_max, h-y_min])return flip_img, flip_bboxesdef dataAugment(self, img, bboxes):
'''
图像增强
输入:
img:图像array
bboxes:该图像的所有框坐标
输出:
img:增强后的图像
bboxes:增强后图片对应的box
'''
change_num = 0#改变的次数
print('------')
while change_num < 1:#默认至少有一种数据增强生效
if random.random() < self.crop_rate:#裁剪
print('裁剪')
change_num += 1
img, bboxes = self._crop_img_bboxes(img, bboxes)if random.random() > self.rotation_rate:#旋转
print('旋转')
change_num += 1
angle = random.uniform(-self.max_rotation_angle, self.max_rotation_angle)
#angle = random.sample([90, 180, 270],1)[0]
scale = random.uniform(0.7, 0.8)
img, bboxes = self._rotate_img_bbox(img, bboxes, angle, scale)if random.random() < self.shift_rate:#平移
print('平移')
change_num += 1
img, bboxes = self._shift_pic_bboxes(img, bboxes)if random.random() > self.change_light_rate: #改变亮度
print('亮度')
change_num += 1
img = self._changeLight(img)if random.random() < self.add_noise_rate:#加噪声
print('加噪声')
change_num += 1
img = self._addNoise(img)if random.random() < self.cutout_rate:#cutout
print('cutout')
change_num += 1
img = self._cutout(img, bboxes, length=self.cut_out_length, n_holes=self.cut_out_holes, threshold=self.cut_out_threshold)#if random.random() < self.flip_rate:#翻转
#print('翻转')
#change_num += 1
#img, bboxes = self._filp_pic_bboxes(img, bboxes)
print('\n')
# print('------')
return img, bboxes
# -*- coding=utf-8 -*-
import xml.etree.ElementTree as ET
import xml.dom.minidom as DOC# 从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]
def parse_xml(xml_path):
'''
输入:
xml_path: xml的文件路径
输出:
从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]
'''
tree = ET.parse(xml_path)
root = tree.getroot()
objs = root.findall('object')
coords = list()
for ix, obj in enumerate(objs):
name = obj.find('name').text
box = obj.find('bndbox')
x_min = int(box[0].text)
y_min = int(box[1].text)
x_max = int(box[2].text)
y_max = int(box[3].text)
coords.append([x_min, y_min, x_max, y_max, name])
return coords
# -*- coding=utf-8 -*-
import xml.etree.ElementTree as ET
import xml.dom.minidom as DOC# 从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]
def parse_xml(xml_path):
'''
输入:
xml_path: xml的文件路径
输出:
从xml文件中提取bounding box信息, 格式为[[x_min, y_min, x_max, y_max, name]]
'''
tree = ET.parse(xml_path)
root = tree.getroot()
objs = root.findall('object')
coords = list()
for ix, obj in enumerate(objs):
name = obj.find('name').text
box = obj.find('bndbox')
x_min = int(float(box[0].text))
y_min = int(float(box[1].text))
x_max = int(float(box[2].text))
y_max = int(float(box[3].text))
coords.append([x_min, y_min, x_max, y_max, name])
return coords
import os
from lxml.etree import Element, SubElement, tostring
from xml.dom.minidom import parseString
from PIL import Image
#保存xml文件函数的核心实现,输入为图片名称image_name,分类category(一个列表,元素与bbox对应),bbox(一个列表,与分类对应),保存路径save_dir ,通道数channel
def save_xml(image_name, category,bbox, file_dir = '/home/xbw/wurenting/dataset_3/',save_dir='/home/xxx/voc_dataset/Annotations/',channel=3):file_path = file_dir
img = Image.open(file_path + image_name)
width = img.size[0]
height = img.size[1]node_root = Element('annotation')node_folder = SubElement(node_root, 'folder')
node_folder.text = 'VOC2007'node_filename = SubElement(node_root, 'filename')
node_filename.text = image_namenode_size = SubElement(node_root, 'size')
node_width = SubElement(node_size, 'width')
node_width.text = '%s' % widthnode_height = SubElement(node_size, 'height')
node_height.text = '%s' % heightnode_depth = SubElement(node_size, 'depth')
node_depth.text = '%s' % channelfor i in range(len(bbox)):
left, top, right, bottom = bbox[i][0],bbox[i][1],bbox[i][2], bbox[i][3]
node_object = SubElement(node_root, 'object')
node_name = SubElement(node_object, 'name')
node_name.text = category[i]
node_difficult = SubElement(node_object, 'difficult')
node_difficult.text = '0'
node_bndbox = SubElement(node_object, 'bndbox')
node_xmin = SubElement(node_bndbox, 'xmin')
node_xmin.text = '%s' % left
node_ymin = SubElement(node_bndbox, 'ymin')
node_ymin.text = '%s' % top
node_xmax = SubElement(node_bndbox, 'xmax')
node_xmax.text = '%s' % right
node_ymax = SubElement(node_bndbox, 'ymax')
node_ymax.text = '%s' % bottomxml = tostring(node_root, pretty_print=True)
dom = parseString(xml)save_xml = os.path.join(save_dir, image_name.replace('jpg', 'xml'))
with open(save_xml, 'wb') as f:
f.write(xml)return
import shutilneed_aug_num = 1dataAug = DataAugmentForObjectDetection()source_pic_root_path = '/home/xbw/wurenting/dataset/'
source_xml_root_path = '/home/xbw/wurenting/labels/'
img_save_path = '/home/xbw/wurenting/argdataset/'
save_dir = '/home/xbw/wurenting/arglabels/'for parent, _, files in os.walk(source_pic_root_path):
for file in files:
cnt = 0
while cnt < need_aug_num:
pic_path = os.path.join(parent, file)
xml_path = os.path.join(source_xml_root_path, file[:-4]+'.xml')
coords = parse_xml(xml_path)#解析得到box信息,格式为[[x_min,y_min,x_max,y_max,name]]
coordss = [coord[:4] for coord in coords]
labels = [coord[4] for coord in coords]
img = cv2.imread(pic_path)
show_pic(img, coordss,labels)# 原图auged_img, auged_bboxes = dataAug.dataAugment(img, coordss)
cnt += 1
cv2.imwrite(img_save_path+file[:-4]+'_arg.jpg',auged_img)
save_xml(file[:-4]+'_arg.jpg',labels,auged_bboxes,file_dir = img_save_path,save_dir=save_dir)
show_pic(auged_img, auged_bboxes,labels)# 强化后的图
推荐阅读
- 热闹中的孤独
- JAVA(抽象类与接口的区别&重载与重写&内存泄漏)
- 放屁有这三个特征的,请注意啦!这说明你的身体毒素太多
- 一个人的旅行,三亚
- 布丽吉特,人生绝对的赢家
- 慢慢的美丽
- 尽力
- 一个小故事,我的思考。
- 家乡的那条小河
- 《真与假的困惑》???|《真与假的困惑》??? ——致良知是一种伟大的力量