【滤波】卡尔曼matlab仿真代码

%Value = https://www.it610.com/article/100 * rand(1,2000); Value = zeros(1,675); Value = x; Best_Value = zeros(1,675); Forecast_Noise = 0.01; Measure_Noise = 0.01; Last_Best_Value = Value(1); Best_Error = 0; for i = 1 : 1 : 675 Forecast_Value = Last_Best_Value; Measure_Value = Value(i); Forecast_Error = sqrt(Forecast_Noise ^ 2 + Best_Error ^ 2); Measure_Error = Measure_Noise; Kalman_Gain = sqrt(Forecast_Error ^ 2 / (Forecast_Error ^ 2 + Measure_Error ^ 2)); Best_Value(i) = Forecast_Value + Kalman_Gain * (Measure_Value - Forecast_Value); Best_Error = sqrt((1 - Kalman_Gain) * Forecast_Error ^ 2); Last_Best_Value = Best_Value(i); endplot(Best_Value,'r'); hold on; plot(Value)

    推荐阅读