k8s|k8s endpoints controller分析

k8s endpoints controller分析 endpoints controller简介 【k8s|k8s endpoints controller分析】endpoints controller是kube-controller-manager组件中众多控制器中的一个,是 endpoints 资源对象的控制器,其通过对service、pod 2种资源的监听,当这2种资源发生变化时会触发 endpoints controller 对相应的endpoints资源进行调谐操作,从而完成endpoints对象的新建、更新、删除等操作。
endpoints controller架构图 endpoints controller的大致组成和处理流程如下图,endpoints controller对pod、service对象注册了event handler,当有事件时,会watch到然后将对应的service对象放入到queue中,然后syncService方法为endpoints controller调谐endpoints对象的核心处理逻辑所在,从queue中取出service对象,再查询相应的pod对象列表,然后对endpoints对象做调谐处理。
k8s|k8s endpoints controller分析
文章图片

service对象简介 Service 是对一组提供相同功能的 Pods 的抽象,并为它们提供一个统一的入口。借助 Service,应用可以方便的实现服务发现与负载均衡,并实现应用的零宕机升级。Service 通过标签来选取服务后端,这些匹配标签的 Pod IP 和端口列表组成 endpoints,由 kube-proxy 负责将服务 IP 负载均衡到这些 endpoints 上。
service的四种类型如下。
(1)ClusterIP 类型为ClusterIP的service,这个service有一个Cluster IP,其实就一个VIP,具体实现原理依靠kubeproxy组件,通过iptables或是ipvs实现。该类型的service 只能在集群内访问。
client访问Cluster IP,通过iptables或ipvs规则转到Real Server(endpoints),从而达到负载均衡的效果。
Headless Service 特殊的ClusterIP,通过指定 Cluster IP(spec.clusterIP)的值为 "None" 来创建 Headless Service。
使用场景一:自主选择权,client自行决定使用哪个Real Server,可以通过查询DNS来获取Real Server的信息。
使用场景二:Headless Service的对应的每一个Endpoints,即每一个Pod,都会有对应的DNS域名,这样Pod之间就可以通过域名互相访问(该用法常用于statefulset)。
(2)NodePort 在 ClusterIP 基础上为 Service在每台机器上绑定一个端口,这样就可以通过:NodePort来访问该服务。在集群内,NodePort 服务仍然像之前的 ClusterIP 服务一样访问。
(3)LoadBalancer 在 NodePort 的基础上,借助 cloud provider 创建一个外部的负载均衡器,并将请求转发到 :NodePort
(4)ExternalName 将服务通过 DNS CNAME 记录方式转发到指定的域名。

apiVersion: v1 kind: Service metadata: name: baidu-service namespace: test spec: type: ExternalName externalName: www.baidu.com

endpoints对象简介 endpoints中指定了需要连接的服务IP和端口,可以认为endpoints定义了service的backend后端。当访问service时,实际上是会将请求负载均衡到endpoints定义的服务IP与端口上面去。
另外,endpoints对象与同名称的service对象相关联。
endpoints controller分析将分为两大块进行,分别是:
(1)endpoints controller初始化与启动分析;
(2)endpoints controller处理逻辑分析。
1.endpoints controller初始化与启动分析
基于tag v1.17.4 https://github.com/kubernetes/kubernetes/releases/tag/v1.17.4
直接看到startEndpointController函数,作为endpoints controller启动分析的入口。
startEndpointController 在startEndpointController函数中启动了一个goroutine,先是调用了endpointcontroller的NewEndpointController方法初始化endpoints controller,接着调用Run方法启动endpoints controller。
// cmd/kube-controller-manager/app/core.go func startEndpointController(ctx ControllerContext) (http.Handler, bool, error) { go endpointcontroller.NewEndpointController( ctx.InformerFactory.Core().V1().Pods(), ctx.InformerFactory.Core().V1().Services(), ctx.InformerFactory.Core().V1().Endpoints(), ctx.ClientBuilder.ClientOrDie("endpoint-controller"), ctx.ComponentConfig.EndpointController.EndpointUpdatesBatchPeriod.Duration, ).Run(int(ctx.ComponentConfig.EndpointController.ConcurrentEndpointSyncs), ctx.Stop) return nil, true, nil }

1.1 NewEndpointController 先来看到endpoints controller的初始化方法NewEndpointController
NewEndpointController函数代码中可以看到,endpoints controller注册了三个informer,分别是podInformer、serviceInformer与endpointsInformer,以及注册了service与pod对象的EventHandler,也即对这2个对象的event进行监听,把event放入事件队列,由endpoints controller的核心处理方法做做处理。
// pkg/controller/endpoint/endpoints_controller.go func NewEndpointController(podInformer coreinformers.PodInformer, serviceInformer coreinformers.ServiceInformer, endpointsInformer coreinformers.EndpointsInformer, client clientset.Interface, endpointUpdatesBatchPeriod time.Duration) *EndpointController { broadcaster := record.NewBroadcaster() broadcaster.StartLogging(klog.Infof) broadcaster.StartRecordingToSink(&v1core.EventSinkImpl{Interface: client.CoreV1().Events("")}) recorder := broadcaster.NewRecorder(scheme.Scheme, v1.EventSource{Component: "endpoint-controller"}) if client != nil && client.CoreV1().RESTClient().GetRateLimiter() != nil { ratelimiter.RegisterMetricAndTrackRateLimiterUsage("endpoint_controller", client.CoreV1().RESTClient().GetRateLimiter()) } e := &EndpointController{ client:client, queue:workqueue.NewNamedRateLimitingQueue(workqueue.DefaultControllerRateLimiter(), "endpoint"), workerLoopPeriod: time.Second, } serviceInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{ AddFunc: e.onServiceUpdate, UpdateFunc: func(old, cur interface{}) { e.onServiceUpdate(cur) }, DeleteFunc: e.onServiceDelete, }) e.serviceLister = serviceInformer.Lister() e.servicesSynced = serviceInformer.Informer().HasSynced podInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{ AddFunc:e.addPod, UpdateFunc: e.updatePod, DeleteFunc: e.deletePod, }) e.podLister = podInformer.Lister() e.podsSynced = podInformer.Informer().HasSynced e.endpointsLister = endpointsInformer.Lister() e.endpointsSynced = endpointsInformer.Informer().HasSynced e.triggerTimeTracker = endpointutil.NewTriggerTimeTracker() e.eventBroadcaster = broadcaster e.eventRecorder = recorder e.endpointUpdatesBatchPeriod = endpointUpdatesBatchPeriod e.serviceSelectorCache = endpointutil.NewServiceSelectorCache() return e }

1.2 Run 主要看到for循环处,根据workers的值(来源于kcm启动参数concurrent-endpoint-syncs配置),启动相应数量的goroutine,跑e.worker方法。
// pkg/controller/endpoint/endpoints_controller.go func (e *EndpointController) Run(workers int, stopCh <-chan struct{}) { defer utilruntime.HandleCrash() defer e.queue.ShutDown() klog.Infof("Starting endpoint controller") defer klog.Infof("Shutting down endpoint controller") if !cache.WaitForNamedCacheSync("endpoint", stopCh, e.podsSynced, e.servicesSynced, e.endpointsSynced) { return } for i := 0; i < workers; i++ { go wait.Until(e.worker, e.workerLoopPeriod, stopCh) } go func() { defer utilruntime.HandleCrash() e.checkLeftoverEndpoints() }() <-stopCh }

1.2.1 worker 直接看到processNextWorkItem方法,从队列queue中取出一个key,然后调用e.syncService方法对该key做处理,e.syncService方法也即endpoints controller的核心处理方法,后面会做详细分析。
// pkg/controller/endpoint/endpoints_controller.go func (e *EndpointController) worker() { for e.processNextWorkItem() { } }func (e *EndpointController) processNextWorkItem() bool { eKey, quit := e.queue.Get() if quit { return false } defer e.queue.Done(eKey) err := e.syncService(eKey.(string)) e.handleErr(err, eKey) return true }

2.endpoints controller核心处理分析
基于tag v1.17.4 https://github.com/kubernetes/kubernetes/releases/tag/v1.17.4
直接看到syncService方法,作为endpoints controller核心处理分析的入口。
2.1 核心处理逻辑-syncService 主要逻辑:
(1)获取service对象,当查询不到该service对象时,删除同名endpoints对象;
(2)当service对象的.Spec.Selector为空时,不存在对应的endpoints对象,直接返回;
(3)根据service对象的.Spec.Selector,查询与service对象匹配的pod列表;
(4)查询service的annotations中是否配置了TolerateUnreadyEndpoints,代表允许为unready的pod也创建endpoints,该配置将会影响下面对endpoints对象的subsets信息的计算;
(5)遍历service对象匹配的pod列表,找出合适的pod,计算endpoints的subsets信息;
遍历pod列表时如何计算出subsets?
(5.1)过滤掉pod ip为空的pod;
(5.2)当TolerateUnreadyEndpoints配置为false且pod的deletetimestamp不为空时,过滤掉该pod;
(5.3)当service没有ports配置,且ClusterIP为None时,为headless service,调用addEndpointSubset函数计算subsets,计算出来的subsets中的ports信息为空;
(5.4)当service有ports配置,遍历ports配置,循环调用addEndpointSubset函数计算subsets(addEndpointSubset函数在后面会展开分析)。
(6)获取endpoints对象;
(7)判断现存endpoints对象与调谐中重新计算出来的的endpoints对象的subsets与labels是否一致,一致则无需更新,直接返回;
(8)当endpoints对象不存在时新建endpoints对象,当endpoints对象存在时更新endpoints对象。
func (e *EndpointController) syncService(key string) error { startTime := time.Now() defer func() { klog.V(4).Infof("Finished syncing service %q endpoints. (%v)", key, time.Since(startTime)) }() namespace, name, err := cache.SplitMetaNamespaceKey(key) if err != nil { return err } service, err := e.serviceLister.Services(namespace).Get(name) if err != nil { if !errors.IsNotFound(err) { return err }// Delete the corresponding endpoint, as the service has been deleted. // TODO: Please note that this will delete an endpoint when a // service is deleted. However, if we're down at the time when // the service is deleted, we will miss that deletion, so this // doesn't completely solve the problem. See #6877. err = e.client.CoreV1().Endpoints(namespace).Delete(name, nil) if err != nil && !errors.IsNotFound(err) { return err } e.triggerTimeTracker.DeleteService(namespace, name) return nil } if service.Spec.Selector == nil { // services without a selector receive no endpoints from this controller; // these services will receive the endpoints that are created out-of-band via the REST API. return nil } klog.V(5).Infof("About to update endpoints for service %q", key) pods, err := e.podLister.Pods(service.Namespace).List(labels.Set(service.Spec.Selector).AsSelectorPreValidated()) if err != nil { // Since we're getting stuff from a local cache, it is // basically impossible to get this error. return err } // If the user specified the older (deprecated) annotation, we have to respect it. tolerateUnreadyEndpoints := service.Spec.PublishNotReadyAddresses if v, ok := service.Annotations[TolerateUnreadyEndpointsAnnotation]; ok { b, err := strconv.ParseBool(v) if err == nil { tolerateUnreadyEndpoints = b } else { utilruntime.HandleError(fmt.Errorf("Failed to parse annotation %v: %v", TolerateUnreadyEndpointsAnnotation, err)) } } // We call ComputeEndpointLastChangeTriggerTime here to make sure that the // state of the trigger time tracker gets updated even if the sync turns out // to be no-op and we don't update the endpoints object. endpointsLastChangeTriggerTime := e.triggerTimeTracker. ComputeEndpointLastChangeTriggerTime(namespace, service, pods) subsets := []v1.EndpointSubset{} var totalReadyEps int var totalNotReadyEps int for _, pod := range pods { if len(pod.Status.PodIP) == 0 { klog.V(5).Infof("Failed to find an IP for pod %s/%s", pod.Namespace, pod.Name) continue } if !tolerateUnreadyEndpoints && pod.DeletionTimestamp != nil { klog.V(5).Infof("Pod is being deleted %s/%s", pod.Namespace, pod.Name) continue }ep, err := podToEndpointAddressForService(service, pod) if err != nil { // this will happen, if the cluster runs with some nodes configured as dual stack and some as not // such as the case of an upgrade.. klog.V(2).Infof("failed to find endpoint for service:%v with ClusterIP:%v on pod:%v with error:%v", service.Name, service.Spec.ClusterIP, pod.Name, err) continue }epa := *ep if endpointutil.ShouldSetHostname(pod, service) { epa.Hostname = pod.Spec.Hostname }// Allow headless service not to have ports. if len(service.Spec.Ports) == 0 { if service.Spec.ClusterIP == api.ClusterIPNone { subsets, totalReadyEps, totalNotReadyEps = addEndpointSubset(subsets, pod, epa, nil, tolerateUnreadyEndpoints) // No need to repack subsets for headless service without ports. } } else { for i := range service.Spec.Ports { servicePort := &service.Spec.Ports[i]portName := servicePort.Name portProto := servicePort.Protocol portNum, err := podutil.FindPort(pod, servicePort) if err != nil { klog.V(4).Infof("Failed to find port for service %s/%s: %v", service.Namespace, service.Name, err) continue }var readyEps, notReadyEps int epp := &v1.EndpointPort{Name: portName, Port: int32(portNum), Protocol: portProto} subsets, readyEps, notReadyEps = addEndpointSubset(subsets, pod, epa, epp, tolerateUnreadyEndpoints) totalReadyEps = totalReadyEps + readyEps totalNotReadyEps = totalNotReadyEps + notReadyEps } } } subsets = endpoints.RepackSubsets(subsets) // See if there's actually an update here. currentEndpoints, err := e.endpointsLister.Endpoints(service.Namespace).Get(service.Name) if err != nil { if errors.IsNotFound(err) { currentEndpoints = &v1.Endpoints{ ObjectMeta: metav1.ObjectMeta{ Name:service.Name, Labels: service.Labels, }, } } else { return err } } createEndpoints := len(currentEndpoints.ResourceVersion) == 0 if !createEndpoints && apiequality.Semantic.DeepEqual(currentEndpoints.Subsets, subsets) && apiequality.Semantic.DeepEqual(currentEndpoints.Labels, service.Labels) { klog.V(5).Infof("endpoints are equal for %s/%s, skipping update", service.Namespace, service.Name) return nil } newEndpoints := currentEndpoints.DeepCopy() newEndpoints.Subsets = subsets newEndpoints.Labels = service.Labels if newEndpoints.Annotations == nil { newEndpoints.Annotations = make(map[string]string) } if !endpointsLastChangeTriggerTime.IsZero() { newEndpoints.Annotations[v1.EndpointsLastChangeTriggerTime] = endpointsLastChangeTriggerTime.Format(time.RFC3339Nano) } else { // No new trigger time, clear the annotation. delete(newEndpoints.Annotations, v1.EndpointsLastChangeTriggerTime) } if newEndpoints.Labels == nil { newEndpoints.Labels = make(map[string]string) } if !helper.IsServiceIPSet(service) { newEndpoints.Labels = utillabels.CloneAndAddLabel(newEndpoints.Labels, v1.IsHeadlessService, "") } else { newEndpoints.Labels = utillabels.CloneAndRemoveLabel(newEndpoints.Labels, v1.IsHeadlessService) } klog.V(4).Infof("Update endpoints for %v/%v, ready: %d not ready: %d", service.Namespace, service.Name, totalReadyEps, totalNotReadyEps) if createEndpoints { // No previous endpoints, create them _, err = e.client.CoreV1().Endpoints(service.Namespace).Create(newEndpoints) } else { // Pre-existing _, err = e.client.CoreV1().Endpoints(service.Namespace).Update(newEndpoints) } if err != nil { if createEndpoints && errors.IsForbidden(err) { // A request is forbidden primarily for two reasons: // 1. namespace is terminating, endpoint creation is not allowed by default. // 2. policy is misconfigured, in which case no service would function anywhere. // Given the frequency of 1, we log at a lower level. klog.V(5).Infof("Forbidden from creating endpoints: %v", err)// If the namespace is terminating, creates will continue to fail. Simply drop the item. if errors.HasStatusCause(err, v1.NamespaceTerminatingCause) { return nil } }if createEndpoints { e.eventRecorder.Eventf(newEndpoints, v1.EventTypeWarning, "FailedToCreateEndpoint", "Failed to create endpoint for service %v/%v: %v", service.Namespace, service.Name, err) } else { e.eventRecorder.Eventf(newEndpoints, v1.EventTypeWarning, "FailedToUpdateEndpoint", "Failed to update endpoint %v/%v: %v", service.Namespace, service.Name, err) }return err } return nil }

2.1.1 addEndpointSubset 下面来展开分析下计算service对象subsets信息的函数addEndpointSubset,计算出的subsets包括了Address(ReadyAddresses)与NotReadyAddresses。
主要逻辑:
(1)当配置了tolerateUnreadyEndpoints且为true时,或pod处于ready状态时,将计算进subsets中的Addresses;
(2)当配置了tolerateUnreadyEndpoints且为false或没有配置时,或pod不处于ready状态时,调用shouldPodBeInEndpoints函数,返回true时将计算进subsets中的NotReadyAddresses。
(2.1)当pod.Spec.RestartPolicy为Never,Pod Status.Phase不为Failed/Successed时,将计算进subsets中的NotReadyAddresses;
(2.2)当pod.Spec.RestartPolicy为OnFailure, Pod Status.Phase不为Successed时,Pod对应的EndpointAddress也会被加入到NotReadyAddresses中;
(2.3)其他情况下,将计算进subsets中的NotReadyAddresses。
// pkg/controller/endpoint/endpoints_controller.go func addEndpointSubset(subsets []v1.EndpointSubset, pod *v1.Pod, epa v1.EndpointAddress, epp *v1.EndpointPort, tolerateUnreadyEndpoints bool) ([]v1.EndpointSubset, int, int) { var readyEps int var notReadyEps int ports := []v1.EndpointPort{} if epp != nil { ports = append(ports, *epp) } if tolerateUnreadyEndpoints || podutil.IsPodReady(pod) { subsets = append(subsets, v1.EndpointSubset{ Addresses: []v1.EndpointAddress{epa}, Ports:ports, }) readyEps++ } else if shouldPodBeInEndpoints(pod) { klog.V(5).Infof("Pod is out of service: %s/%s", pod.Namespace, pod.Name) subsets = append(subsets, v1.EndpointSubset{ NotReadyAddresses: []v1.EndpointAddress{epa}, Ports:ports, }) notReadyEps++ } return subsets, readyEps, notReadyEps }func shouldPodBeInEndpoints(pod *v1.Pod) bool { switch pod.Spec.RestartPolicy { case v1.RestartPolicyNever: return pod.Status.Phase != v1.PodFailed && pod.Status.Phase != v1.PodSucceeded case v1.RestartPolicyOnFailure: return pod.Status.Phase != v1.PodSucceeded default: return true } }

IsPodReady 当在pod的.status.conditions中,type为Ready的status属性值为True时,IsPodReady返回true。
// pkg/api/v1/pod/util.go // IsPodReady returns true if a pod is ready; false otherwise. func IsPodReady(pod *v1.Pod) bool { return IsPodReadyConditionTrue(pod.Status) }// GetPodReadyCondition extracts the pod ready condition from the given status and returns that. // Returns nil if the condition is not present. func GetPodReadyCondition(status v1.PodStatus) *v1.PodCondition { _, condition := GetPodCondition(&status, v1.PodReady) return condition }

总结 endpoints controller架构图 endpoints controller的大致组成和处理流程如下图,endpoints controller对pod、service对象注册了event handler,当有事件时,会watch到然后将对应的service对象放入到queue中,然后syncService方法为endpoints controller调谐endpoints对象的核心处理逻辑所在,从queue中取出service对象,再查询相应的pod对象列表,然后对endpoints对象做调谐处理。
k8s|k8s endpoints controller分析
文章图片

endpoints controller核心处理逻辑 endpoints controller的核心处理逻辑是获取service对象,当service不存在时删除同名endpoints对象,当存在时,根据service对象所关联的pod列表,计算出endpoints对象的最新subsets信息,然后新建或更新endpoints对象。
k8s|k8s endpoints controller分析
文章图片

    推荐阅读