combineByKey的使用
combineByKey的使用
def combineByKey[C](createCombiner: (V) => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C): RDD[(K, C)]
def combineByKey[C](createCombiner: (V) => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C, numPartitions: Int): RDD[(K, C)]
def combineByKey[C](createCombiner: (V) => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C, partitioner: Partitioner, mapSideCombine: Boolean = true, serializer: Serializer = null): RDD[(K, C)]
其中的参数:
createCombiner:组合器函数,用于将V类型转换成C类型,输入参数为RDD[K,V]中的V,输出为C
mergeValue:合并值函数,将一个C类型和一个V类型值合并成一个C类型,输入参数为(C,V),输出为C
mergeCombiners:合并组合器函数,用于将两个C类型值合并成一个C类型,输入参数为(C,C),输出为C
numPartitions:结果RDD分区数,默认保持原有的分区数
partitioner:分区函数,默认为HashPartitioner
mapSideCombine:是否需要在Map端进行combine操作,类似于MapReduce中的combine,默认为true
举例理解:
假设我们要将一堆的各类水果给榨果汁,并且要求果汁只能是纯的,不能有其他品种的水果。那么我们需要一下几步:
1 定义我们需要什么样的果汁。
2 定义一个榨果汁机,即给定水果,就能给出我们定义的果汁。--相当于hadoop中的local combiner
3 定义一个果汁混合器,即能将相同类型的水果果汁给混合起来。--相当于全局进行combiner
那么对比上述三步,combineByKey的三个函数也就是这三个功能
1 createCombiner就是定义了v如何转换为c
2 mergeValue 就是定义了如何给定一个V将其与原来的C合并成新的C
3 就是定义了如何将相同key下的C给合并成一个C
var rdd1 = sc.makeRDD(Array(("A",1),("A",2),("B",1),("B",2),("C",1)))
rdd1.combineByKey(
(v : Int) => List(v),--将1 转换成 list(1)
(c : List[Int], v : Int) => v :: c,--将list(1)和2进行组合从而转换成list(1,2)
(c1 : List[Int], c2 : List[Int]) => c1 ::: c2--将全局相同的key的value进行组合
).collect
res65: Array[(String, List[Int])] = Array((A,List(2, 1)), (B,List(2, 1)), (C,List(1)))
简要介绍
def combineByKey[C](createCombiner: (V) => C,
mergeValue: (C, V) => C,
mergeCombiners: (C, C) => C): RD
- createCombiner: combineByKey() 会遍历分区中的所有元素,因此每个元素的键要么还没有遇到过,要么就
和之前的某个元素的键相同。如果这是一个新的元素, combineByKey() 会使用一个叫作 createCombiner() 的函数来创建
那个键对应的累加器的初始值 - mergeValue: 如果这是一个在处理当前分区之前已经遇到的键, 它会使用 mergeValue() 方法将该键的累加器对应的当前值与这个新的值进行合并
- mergeCombiners: 由于每个分区都是独立处理的, 因此对于同一个键可以有多个累加器。如果有两个或者更
多的分区都有对应同一个键的累加器, 就需要使用用户提供的 mergeCombiners() 方法将各
个分区的结果进行合并。
case class ScoreDetail(studentName: String, subject: String, score: Float)
下面是一些测试数据,加载测试数据集合 key = Students name and value = https://www.it610.com/article/ScoreDetail instance
val scores = List(
ScoreDetail("xiaoming", "Math", 98),
ScoreDetail("xiaoming", "English", 88),
ScoreDetail("wangwu", "Math", 75),
ScoreDetail("wangwu", "English", 78),
ScoreDetail("lihua", "Math", 90),
ScoreDetail("lihua", "English", 80),
ScoreDetail("zhangsan", "Math", 91),
ScoreDetail("zhangsan", "English", 80))
- 换成二元组, 也可以理解成转换成一个map, 利用了for 和 yield的组合
val scoresWithKey = for { i <- scores } yield (i.studentName, i)
val scoresWithKeyRDD = sc.parallelize(scoresWithKey).partitionBy(new HashPartitioner(3)).cache
聚合求平均值让后打印
val avgScoresRDD = scoresWithKeyRDD.combineByKey(
(x: ScoreDetail) => (x.score, 1) /*createCombiner*/,
(acc: (Float, Int), x: ScoreDetail) => (acc._1 + x.score, acc._2 + 1) /*mergeValue*/,
(acc1: (Float, Int), acc2: (Float, Int)) => (acc1._1 + acc2._1, acc1._2 + acc2._2) /*mergeCombiners*/
// calculate the average
).map( { case(key, value) => (key, value._1/value._2) })avgScoresRDD.collect.foreach(println)
/*输出:
(zhangsan,85.5)
(lihua,85.0)
(xiaoming,93.0)
(wangwu,76.5)
*/
解释一下scoresWithKeyRDD.combineByKey
createCombiner: (x: ScoreDetail) => (x.score, 1)
这是第一次遇到zhangsan,创建一个函数,把map中的value转成另外一个类型 ,这里是把(zhangsan,(ScoreDetail类))转换成(zhangsan,(91,1))
mergeValue: (acc: (Float, Int), x: ScoreDetail) => (acc._1 + x.score, acc._2 + 1) 再次碰到张三, 就把这两个合并, 这里是将(zhangsan,(91,1)) 这种类型 和 (zhangsan,(ScoreDetail类))这种类型合并,合并成了(zhangsan,(171,2))
mergeCombiners (acc1: (Float, Int), acc2: (Float, Int)) 这个是将多个分区中的zhangsan的数据进行合并, 我们这里zhansan在同一个分区,这个地方就没有用上
------------------------------------------------------------------------
contRdd.combineByKey(
(score:(String,Long)) => Map(score._1 -> score._2),
(c:Map[String,Long],score) => (c ++ Map(score._1 -> score._2)),
(c1:Map[String,Long],c2:Map[String,Long]) => (c1 ++ c2) )
【combineByKey的使用】
推荐阅读
- 热闹中的孤独
- JAVA(抽象类与接口的区别&重载与重写&内存泄漏)
- 放屁有这三个特征的,请注意啦!这说明你的身体毒素太多
- 一个人的旅行,三亚
- 布丽吉特,人生绝对的赢家
- 慢慢的美丽
- 尽力
- 一个小故事,我的思考。
- 家乡的那条小河
- 《真与假的困惑》???|《真与假的困惑》??? ——致良知是一种伟大的力量