基于keras的时域卷积网络(TCN)

1 前言 时域卷积网络(Temporal Convolutional Network,TCN)属于卷积神经网络(CNN)家族,于2017年被提出,目前已在多项时间序列数据任务中击败循环神经网络(RNN)家族。
基于keras的时域卷积网络(TCN)
文章图片
TCN 网络结构 图中,xi 表示第 i 个时刻的特征,可以是多维的。
TCN源码见-->https://github.com/philipperemy/keras-tcn,由于源码过于复杂,新手不易上手,笔者参照源码,手撕了个简洁版的TCN,与君共享。
本文以 MNIST 手写数字分类为例,讲解 TCN 模型。关于 MNIST 数据集的说明,见使用TensorFlow实现MNIST数据集分类。
笔者工作空间如下:
基于keras的时域卷积网络(TCN)
文章图片

代码资源见-->时域卷积网络(TCN)案例模型
2 实验 TCN.py

from tensorflow.examples.tutorials.mnist import input_data from keras.models import Model from keras.layers import add,Input,Conv1D,Activation,Flatten,Dense#载入数据 def read_data(path): mnist=input_data.read_data_sets(path,one_hot=True) train_x,train_y=mnist.train.images.reshape(-1,28,28),mnist.train.labels, valid_x,valid_y=mnist.validation.images.reshape(-1,28,28),mnist.validation.labels, test_x,test_y=mnist.test.images.reshape(-1,28,28),mnist.test.labels return train_x,train_y,valid_x,valid_y,test_x,test_y#残差块 def ResBlock(x,filters,kernel_size,dilation_rate): r=Conv1D(filters,kernel_size,padding='same',dilation_rate=dilation_rate,activation='relu')(x) #第一卷积 r=Conv1D(filters,kernel_size,padding='same',dilation_rate=dilation_rate)(r) #第二卷积 if x.shape[-1]==filters: shortcut=x else: shortcut=Conv1D(filters,kernel_size,padding='same')(x)#shortcut(捷径) o=add([r,shortcut]) o=Activation('relu')(o)#激活函数 return o#序列模型 def TCN(train_x,train_y,valid_x,valid_y,test_x,test_y): inputs=Input(shape=(28,28)) x=ResBlock(inputs,filters=32,kernel_size=3,dilation_rate=1) x=ResBlock(x,filters=32,kernel_size=3,dilation_rate=2) x=ResBlock(x,filters=16,kernel_size=3,dilation_rate=4) x=Flatten()(x) x=Dense(10,activation='softmax')(x) model=Model(input=inputs,output=x) #查看网络结构 model.summary() #编译模型 model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy']) #训练模型 model.fit(train_x,train_y,batch_size=500,nb_epoch=30,verbose=2,validation_data=https://www.it610.com/article/(valid_x,valid_y)) #评估模型 pre=model.evaluate(test_x,test_y,batch_size=500,verbose=2) print('test_loss:',pre[0],'- test_acc:',pre[1])train_x,train_y,valid_x,valid_y,test_x,test_y=read_data('MNIST_data') TCN(train_x,train_y,valid_x,valid_y,test_x,test_y)

网络各层输出尺寸:
__________________________________________________________________________________________________ Layer (type)Output ShapeParam #Connected to ================================================================================================== input_1 (InputLayer)(None, 28, 28)0 __________________________________________________________________________________________________ conv1d_1 (Conv1D)(None, 28, 32)2720input_1[0][0] __________________________________________________________________________________________________ conv1d_2 (Conv1D)(None, 28, 32)3104conv1d_1[0][0] __________________________________________________________________________________________________ conv1d_3 (Conv1D)(None, 28, 32)2720input_1[0][0] __________________________________________________________________________________________________ add_1 (Add)(None, 28, 32)0conv1d_2[0][0] conv1d_3[0][0] __________________________________________________________________________________________________ activation_1 (Activation)(None, 28, 32)0add_1[0][0] __________________________________________________________________________________________________ conv1d_4 (Conv1D)(None, 28, 32)3104activation_1[0][0] __________________________________________________________________________________________________ conv1d_5 (Conv1D)(None, 28, 32)3104conv1d_4[0][0] __________________________________________________________________________________________________ add_2 (Add)(None, 28, 32)0conv1d_5[0][0] activation_1[0][0] __________________________________________________________________________________________________ activation_2 (Activation)(None, 28, 32)0add_2[0][0] __________________________________________________________________________________________________ conv1d_6 (Conv1D)(None, 28, 16)1552activation_2[0][0] __________________________________________________________________________________________________ conv1d_7 (Conv1D)(None, 28, 16)784conv1d_6[0][0] __________________________________________________________________________________________________ conv1d_8 (Conv1D)(None, 28, 16)1552activation_2[0][0] __________________________________________________________________________________________________ add_3 (Add)(None, 28, 16)0conv1d_7[0][0] conv1d_8[0][0] __________________________________________________________________________________________________ activation_3 (Activation)(None, 28, 16)0add_3[0][0] __________________________________________________________________________________________________ flatten_1 (Flatten)(None, 448)0activation_3[0][0] __________________________________________________________________________________________________ dense_1 (Dense)(None, 10)4490flatten_1[0][0] ================================================================================================== Total params: 23,130 Trainable params: 23,130 Non-trainable params: 0

网络训练结果:
Epoch 28/30 - 6s - loss: 0.0112 - acc: 0.9966 - val_loss: 0.0539 - val_acc: 0.9854 Epoch 29/30 - 6s - loss: 0.0080 - acc: 0.9977 - val_loss: 0.0536 - val_acc: 0.9872 Epoch 30/30 - 6s - loss: 0.0099 - acc: 0.9965 - val_loss: 0.0486 - val_acc: 0.9892 test_loss: 0.055041389787220396 - test_acc: 0.9855000048875808

可以看到,TCN模型的预测精度为 0.9855, 超越了 seq2seq模型案例分析 中 AttSeq2Seq 模型(0.9825)、基于keras的双层LSTM网络和双向LSTM网络 中 DoubleLSTM 模型(0.9789)和 BiLSTM 模型(0.9795)、基于keras的残差网络 中 ResNet 模型(0.9721)。
3 拓展延申 有时候,并不需要最后一层 TCN 输出序列的所有步,而只需要最后一层 TCN 输出序列的第一步或最后一步。这时候,需要借助 lambda 关键字定义 Lambda 层,取代 Flatten 层。如下:
from keras.layers import Lambda ...... x=ResBlock(x,filters=16,kernel_size=3,dilation_rate=4) x=Lambda(lambda x: x[:,0,:])(x)#此前是:x=Flatten()(x) x=Dense(10,activation='softmax')(x) ......

lambda 关键字用于定义匿名函数,应用如下:
import numpy as np f=lambda x: x*x+x+1 x=np.array([1,2,3]) y=f(x) print(y)#输出:[ 37 13]

【基于keras的时域卷积网络(TCN)】

    推荐阅读