C# 分布式自增ID算法snowflake(雪花算法)
概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移到Cassandra,因为Cassandra没有顺序ID生成机制,所以开发了这样一套全局唯一ID生成服务。 该项目地址为:https://github.com/twitter/snowflake是用Scala实现的。
结构 【C# 分布式自增ID算法snowflake(雪花算法)】snowflake的结构如下(每部分用-分开):
0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000
第一位为未使用,接下来的41位为毫秒级时间(41位的长度可以使用69年),然后是5位datacenterId和5位workerId(10位的长度最多支持部署1024个节点) ,最后12位是毫秒内的计数(12位的计数顺序号支持每个节点每毫秒产生4096个ID序号)
一共加起来刚好64位,为一个Long型。(转换成字符串长度为18)
snowflake生成的ID整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和workerId作区分),并且效率较高。据说:snowflake每秒能够产生26万个ID。
C#代码
文章图片
public class IdWorker { //机器ID private static long workerId; private static long twepoch = 687888001020L; //唯一时间,这是一个避免重复的随机量,自行设定不要大于当前时间戳 private static long sequence = 0L; private static int workerIdBits = 4; //机器码字节数。4个字节用来保存机器码(定义为Long类型会出现,最大偏移64位,所以左移64位没有意义) public static long maxWorkerId = -1L ^ -1L << workerIdBits; //最大机器ID private static int sequenceBits = 10; //计数器字节数,10个字节用来保存计数码 private static int workerIdShift = sequenceBits; //机器码数据左移位数,就是后面计数器占用的位数 private static int timestampLeftShift = sequenceBits + workerIdBits; //时间戳左移动位数就是机器码和计数器总字节数 public static long sequenceMask = -1L ^ -1L << sequenceBits; //一微秒内可以产生计数,如果达到该值则等到下一微妙在进行生成 private long lastTimestamp = -1L; /// /// 机器码 /// /// public IdWorker(long workerId) { if (workerId > maxWorkerId || workerId < 0) throw new Exception(string.Format("worker Id can't be greater than {0} or less than 0 ", workerId)); IdWorker.workerId = workerId; }public long nextId() { lock (this) { long timestamp = timeGen(); if (this.lastTimestamp == timestamp) { //同一微妙中生成ID IdWorker.sequence = (IdWorker.sequence + 1) & IdWorker.sequenceMask; //用&运算计算该微秒内产生的计数是否已经到达上限 if (IdWorker.sequence == 0) { //一微妙内产生的ID计数已达上限,等待下一微妙 timestamp = tillNextMillis(this.lastTimestamp); } } else { //不同微秒生成ID IdWorker.sequence = 0; //计数清0 } if (timestamp < lastTimestamp) { //如果当前时间戳比上一次生成ID时时间戳还小,抛出异常,因为不能保证现在生成的ID之前没有生成过 throw new Exception(string.Format("Clock moved backwards.Refusing to generate id for {0} milliseconds", this.lastTimestamp - timestamp)); } this.lastTimestamp = timestamp; //把当前时间戳保存为最后生成ID的时间戳 long nextId = (timestamp - twepoch << timestampLeftShift) | IdWorker.workerId << IdWorker.workerIdShift | IdWorker.sequence; return nextId; } }/// /// 获取下一微秒时间戳 /// /// ///private long tillNextMillis(long lastTimestamp) { long timestamp = timeGen(); while (timestamp <= lastTimestamp) { timestamp = timeGen(); } return timestamp; }/// /// 生成当前时间戳 /// /// private long timeGen() { return (long)(DateTime.UtcNow - new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc)).TotalMilliseconds; } }
文章图片
调用方法:
IdWorker idworker = new IdWorker(1); for (int i = 0; i < 1000; i++) { Console.WriteLine(idworker.nextId()); }
推荐阅读
- 画解算法(1.|画解算法:1. 两数之和)
- Guava|Guava RateLimiter与限流算法
- 一个选择排序算法
- SG平滑轨迹算法的原理和实现
- 《算法》-图[有向图]
- 深入浅出谈一下有关分布式消息技术(Kafka)
- LeetCode算法题-11.|LeetCode算法题-11. 盛最多水的容器(Swift)
- 虚拟DOM-Diff算法详解
- 《数据结构与算法之美》——队列
- 算法回顾(SVD在协同过滤推荐系统中的应用)