Keras 自定义优化器,实现小内存大Batch更新梯度

1、“软batch”、梯度累计
我是用mask rcnn做分割,模型比较庞大,1080显卡最多也就能跑batch size=2,但又想起到batch size=64的效果,那可以怎么办呢?一种可以考虑的方案是,每次算batch size=2,然后把梯度缓存起来,32个batch后才更新参数。也就是说,每个小batch都算梯度,但每32个batch才更新一次参数。
我的需求是,SGD+Momentum实现梯度累加功能,借鉴了keras的optimizier的定义,可以看出每个优化器SGD、Adam等都是重载了Optimizer类,主要是需要重写get_updates方法。

2、思路:
学习速率 ?, 初始参数 θ, 初始速率v, 动量衰减参数α,每次迭代得到的梯度是g
计算梯度和误差,并更新速度v和参数θ:
Keras 自定义优化器,实现小内存大Batch更新梯度
文章图片


使用SGD+momentum进行梯度下降,计算参数v和θ(new_p)的值:
【Keras 自定义优化器,实现小内存大Batch更新梯度】v = self.momentum * sg / float(self.steps_per_update) - lr * g # velocity
new_p = p + v

假设每steps_per_update批次更新一次梯度,先判断当前迭代是否足够steps_per_update次,也就是条件:
cond = K.equal(self.iterations % self.steps_per_update, 0)
如果满足条件,更新参数v和θ,如下:
self.updates.append(K.switch(cond, K.update(sg, v), p))
self.updates.append(K.switch(cond, K.update(p, new_p), p))

并且重新累计梯度,若不满足条件,则直接累计梯度:
self.updates.append(K.switch(cond, K.update(sg, g), K.update(sg, sg + g)))

3、我的完整实现如下:

class MySGD(Optimizer): """ Keras中简单自定义SGD优化器每隔一定的batch才更新一次参数 Includes support for momentum, learning rate decay, and Nesterov momentum.# Arguments lr: float >= 0. Learning rate. momentum: float >= 0. Parameter that accelerates SGD in the relevant direction and dampens oscillations. decay: float >= 0. Learning rate decay over each update. nesterov: boolean. Whether to apply Nesterov momentum. steps_per_update: how many batch to update gradient """ def __init__(self, lr=0.01, momentum=0., decay=0., nesterov=False, steps_per_update=2, **kwargs): super(MySGD, self).__init__(**kwargs) with K.name_scope(self.__class__.__name__): self.iterations = K.variable(0, dtype='int64', name='iterations') self.lr = K.variable(lr, name='lr') self.steps_per_update = steps_per_update# 多少batch才更新一次 self.momentum = K.variable(momentum, name='momentum') self.decay = K.variable(decay, name='decay') self.initial_decay = decay self.nesterov = nesterov print("每%dbatch更新一次梯度" % self.steps_per_update)@interfaces.legacy_get_updates_support def get_updates(self, loss, params): """主要的参数更新算法""" # learning rate decay lr = self.lr if self.initial_decay > 0: lr = lr * (1. / (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay))))shapes = [K.int_shape(p) for p in params] sum_grads = [K.zeros(shape) for shape in shapes]# 平均梯度,用来梯度下降 grads = self.get_gradients(loss, params)# 当前batch梯度 self.updates = [K.update_add(self.iterations, 1)]# 定义赋值算子集合 self.weights = [self.iterations] + sum_grads# 优化器带来的权重,在保存模型时会被保存 for p, g, sg in zip(params, grads, sum_grads): # momentum 梯度下降 v = self.momentum * sg / float(self.steps_per_update) - lr * g# velocity if self.nesterov: new_p = p + self.momentum * v - lr * g else: new_p = p + v# 如果有约束,对参数加上约束 if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) cond = K.equal(self.iterations % self.steps_per_update, 0)# 满足条件才更新参数 self.updates.append(K.switch(cond, K.update(sg, v), p)) self.updates.append(K.switch(cond, K.update(p, new_p), p))# 满足条件就要重新累积,不满足条件直接累积 self.updates.append(K.switch(cond, K.update(sg, g), K.update(sg, sg + g))) return self.updatesdef get_config(self): config = {'lr': float(K.get_value(self.lr)), 'steps_per_update': self.steps_per_update, 'momentum': float(K.get_value(self.momentum)), 'decay': float(K.get_value(self.decay)), 'nesterov': self.nesterov } base_config = super(MySGD, self).get_config() return dict(list(base_config.items()) + list(config.items()))


4、keras的optimizier代码如下:
class Optimizer(object): """Abstract optimizer base class.Note: this is the parent class of all optimizers, not an actual optimizer that can be used for training models.All Keras optimizers support the following keyword arguments:clipnorm: float >= 0. Gradients will be clipped when their L2 norm exceeds this value. clipvalue: float >= 0. Gradients will be clipped when their absolute value exceeds this value. """def __init__(self, **kwargs): allowed_kwargs = {'clipnorm', 'clipvalue'} for k in kwargs: if k not in allowed_kwargs: raise TypeError('Unexpected keyword argument ' 'passed to optimizer: ' + str(k)) self.__dict__.update(kwargs) self.updates = [] self.weights = []@interfaces.legacy_get_updates_support def get_updates(self, loss, params): raise NotImplementedErrordef get_gradients(self, loss, params): grads = K.gradients(loss, params) if None in grads: raise ValueError('An operation has `None` for gradient. ' 'Please make sure that all of your ops have a ' 'gradient defined (i.e. are differentiable). ' 'Common ops without gradient: ' 'K.argmax, K.round, K.eval.') if hasattr(self, 'clipnorm') and self.clipnorm > 0: norm = K.sqrt(sum([K.sum(K.square(g)) for g in grads])) grads = [clip_norm(g, self.clipnorm, norm) for g in grads] if hasattr(self, 'clipvalue') and self.clipvalue > 0: grads = [K.clip(g, -self.clipvalue, self.clipvalue) for g in grads] return gradsdef set_weights(self, weights): """Sets the weights of the optimizer, from Numpy arrays.Should only be called after computing the gradients (otherwise the optimizer has no weights).# Arguments weights: a list of Numpy arrays. The number of arrays and their shape must match number of the dimensions of the weights of the optimizer (i.e. it should match the output of `get_weights`).# Raises ValueError: in case of incompatible weight shapes. """ params = self.weights if len(params) != len(weights): raise ValueError('Length of the specified weight list (' + str(len(weights)) + ') does not match the number of weights ' + 'of the optimizer (' + str(len(params)) + ')') weight_value_tuples = [] param_values = K.batch_get_value(params) for pv, p, w in zip(param_values, params, weights): if pv.shape != w.shape: raise ValueError('Optimizer weight shape ' + str(pv.shape) + ' not compatible with ' 'provided weight shape ' + str(w.shape)) weight_value_tuples.append((p, w)) K.batch_set_value(weight_value_tuples)def get_weights(self): """Returns the current value of the weights of the optimizer.# Returns A list of numpy arrays. """ return K.batch_get_value(self.weights)def get_config(self): config = {} if hasattr(self, 'clipnorm'): config['clipnorm'] = self.clipnorm if hasattr(self, 'clipvalue'): config['clipvalue'] = self.clipvalue return config@classmethod def from_config(cls, config): return cls(**config)class SGD(Optimizer): """Stochastic gradient descent optimizer.Includes support for momentum, learning rate decay, and Nesterov momentum.# Arguments lr: float >= 0. Learning rate. momentum: float >= 0. Parameter that accelerates SGD in the relevant direction and dampens oscillations. decay: float >= 0. Learning rate decay over each update. nesterov: boolean. Whether to apply Nesterov momentum. """def __init__(self, lr=0.01, momentum=0., decay=0., nesterov=False, **kwargs): super(SGD, self).__init__(**kwargs) with K.name_scope(self.__class__.__name__): self.iterations = K.variable(0, dtype='int64', name='iterations') self.lr = K.variable(lr, name='lr') self.momentum = K.variable(momentum, name='momentum') self.decay = K.variable(decay, name='decay') self.initial_decay = decay self.nesterov = nesterov@interfaces.legacy_get_updates_support def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)]lr = self.lr if self.initial_decay > 0: lr = lr * (1. / (1. + self.decay * K.cast(self.iterations, K.dtype(self.decay)))) # momentum shapes = [K.int_shape(p) for p in params] moments = [K.zeros(shape) for shape in shapes] self.weights = [self.iterations] + moments for p, g, m in zip(params, grads, moments): v = self.momentum * m - lr * g# velocity self.updates.append(K.update(m, v))if self.nesterov: new_p = p + self.momentum * v - lr * g else: new_p = p + v# Apply constraints. if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p)self.updates.append(K.update(p, new_p)) return self.updatesdef get_config(self): config = {'lr': float(K.get_value(self.lr)), 'momentum': float(K.get_value(self.momentum)), 'decay': float(K.get_value(self.decay)), 'nesterov': self.nesterov} base_config = super(SGD, self).get_config() return dict(list(base_config.items()) + list(config.items()))


5、总结
梯度累加就是,每次获取1个batch的数据,计算1次梯度,梯度不清空,不断累加,累加一定次数后,根据累加的梯度更新网络参数,然后清空梯度,进行下一次循环。
一定条件下,batchsize越大训练效果越好,梯度累加则实现了batchsize的变相扩大,如果accumulation_steps为8,则batchsize '变相' 扩大了8倍,是解决显存受限的一个不错的trick,使用时需要注意,学习率也要适当放大。
不过accumulation_steps=8和真实的batchsize放大八倍相比,效果自然是差一些,毕竟八倍Batchsize的BN估算出来的均值和方差肯定更精准一些。

https://blog.csdn.net/zywvvd/article/details/90731631

    推荐阅读