模型评估


https://en.wikipedia.org/wiki/Precision_and_recall

  1. 精度

预测为positve的占所有预测为positive的比例。
Recall = t p t p + f n {\displaystyle {\text{Recall}}={\frac {tp}{tp+fn}}\,}
  1. 召回率
预测为positve的占实际positive的比例。
  1. 准确率
预测positive和negetive都正确的占所有样本的比例。


True condition
Total population Condition positive Condition negative Prevalence =Σ Condition positive / Σ Total population Accuracy (ACC) =Σ True positive + Σ True negative / Σ Total population
Predicted condition Predicted condition positive True positive, Power False positive, Type I error Positive predictive value (PPV), Precision =Σ True positive / Σ Predicted condition positive False discovery rate (FDR) =Σ False positive / Σ Predicted condition positive
Predicted condition negative False negative, Type II error True negative False omission rate (FOR) =Σ False negative / Σ Predicted condition negative Negative predictive value (NPV) =Σ True negative / Σ Predicted condition negative
True positive rate (TPR), Recall, Sensitivity, probability of detection =Σ True positive / Σ Condition positive False positive rate (FPR), Fall-out, probability of false alarm =Σ False positive / Σ Condition negative Positive likelihood ratio (LR+) =TPR / FPR Diagnostic odds ratio (DOR) =LR+ / LR? F1 score =2 / 1 / Recall +1 / Precision
False negative rate (FNR), Miss rate =Σ False negative / Σ Condition positive True negative rate (TNR), Specificity (SPC) =Σ True negative / Σ Condition negative Negative likelihood ratio (LR?) =FNR / TNR

    推荐阅读