https://en.wikipedia.org/wiki/Precision_and_recall
- 精度
预测为positve的占所有预测为positive的比例。
Recall = t p t p + f n {\displaystyle {\text{Recall}}={\frac {tp}{tp+fn}}\,}
- 召回率
- 准确率
True condition | ||||||
Total population | Condition positive | Condition negative | Prevalence =Σ Condition positive / Σ Total population | Accuracy (ACC) =Σ True positive + Σ True negative / Σ Total population | ||
Predicted condition | Predicted condition positive | True positive, Power | False positive, Type I error | Positive predictive value (PPV), Precision =Σ True positive / Σ Predicted condition positive | False discovery rate (FDR) =Σ False positive / Σ Predicted condition positive | |
Predicted condition negative | False negative, Type II error | True negative | False omission rate (FOR) =Σ False negative / Σ Predicted condition negative | Negative predictive value (NPV) =Σ True negative / Σ Predicted condition negative | ||
True positive rate (TPR), Recall, Sensitivity, probability of detection =Σ True positive / Σ Condition positive | False positive rate (FPR), Fall-out, probability of false alarm =Σ False positive / Σ Condition negative | Positive likelihood ratio (LR+) =TPR / FPR | Diagnostic odds ratio (DOR) =LR+ / LR? | F1 score =2 / 1 / Recall +1 / Precision | ||
False negative rate (FNR), Miss rate =Σ False negative / Σ Condition positive | True negative rate (TNR), Specificity (SPC) =Σ True negative / Σ Condition negative | Negative likelihood ratio (LR?) =FNR / TNR |
推荐阅读
- r语言|手把手(R语言文本挖掘和词云可视化实践)
- R语言从入门到机器学习|R语言rename重命名dataframe的列名实战:rename重命名dataframe的列名(写错的列名不会被重命名)
- R下载安装,Linux版
- R|不同方法的正态性检验及R语言实现
- jiebaR - 中文分词
- 信息增益率
- R - dplyr 包
- r语言|R中处理空间面板模型的包spdep的用法
- R语言|电力窃漏电用户自动识别 细节