OpenCV-Python图像轮廓之轮廓特征详解
目录
- 前言
- 一、轮廓的矩
- 二、轮廓的面积
- 三、轮廓的长度
- 四、轮廓的近似多边形
- 五、轮廓的凸包
- 六、轮廓的直边界矩形
- 七、轮廓的旋转矩形
- 八、轮廓的最小外包圆
- 九、轮廓的拟合椭圆
- 十、轮廓的拟合直线
- 十一、轮廓的最小外包三角形
前言 图像轮廓是指由位于边缘、连续的、具有相同颜色和强度的点构成的曲线,它可以用于形状分析以及对象检测和识别。
一、轮廓的矩 轮廓的矩包含了轮廓的各种几何特征,如面积、位置、角度、形状等。cv2.moments()函数用于返回轮廓的矩,其基本格式如下:
ret = cv2.moments(array[, binaryImage])ret为返回的轮廓的矩,是一个字典对象, 大多数矩的含义比较抽象, 但其中的零阶矩(m00)表示轮廓的面积array为表示轮廓的数组binaryImage值为True时,会将array对象中的所有非0值设置为1
import cv2import numpy as npimport matplotlib.pyplot as pltimg = cv2.imread('shape2.jpg')cv2.imshow('original', img)img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)img1 = np.zeros(img.shape, np.uint8) + 255img1 = cv2.drawContours(img1, contours, -1,(0,255,0),2)cv2.imshow('Contours',img1)m0 = cv2.moments(contours[0])m1 = cv2.moments(contours[1])print('轮廓0的矩:', m0)print('轮廓1的矩:', m1)print('轮廓0的面积:', m0['m00'])print('轮廓1的面积:', m1['m00'])cv2.waitKey(0)cv2.destroyAllWindows()
文章图片
文章图片
二、轮廓的面积 cv2.contourArea()函数用于返回轮廓的面积,其基本格式如下:
ret = cv2.contourArea(contour[, oriented])ret为返回的面积contour为轮廓oriented为可选参数, 其参数值为True时, 返回值的正与负表示表示轮廓是顺时针还是逆时针, 参数值为False(默认值)时, 函数返回值为绝对值
img = cv2.imread('shape2.jpg')img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)m0 = cv2.contourArea(contours[0])m1 = cv2.contourArea(contours[1])print('轮廓0的面积:', m0)print('轮廓1的面积:', m1)
文章图片
三、轮廓的长度 cv2.arcLength()函数用于返回轮廓的长度,其基本格式如下:
ret = cv2.cv2.arcLength(contour, closed)ret为返回的长度contour为轮廓closed为布尔值, 为True时表示轮廓是封闭的
img = cv2.imread('shape2.jpg')img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)m0 = cv2.arcLength(contours[0], True)m1 = cv2.arcLength(contours[1], True)print('轮廓0的长度:', m0)print('轮廓1的长度:', m1)
文章图片
四、轮廓的近似多边形 cv2.approxPolyDP()函数用于返回轮廓的近似多边形,其基本格式如下:
ret = cv2.cv2.arcLength(contour, epsilon, closed)ret为返回的近似多边形contour为轮廓epsilon为精度, 表示近似多边形接近轮廓的最大距离closed为布尔值, 为True时表示轮廓是封闭的
img = cv2.imread('shape3.jpg')cv2.imshow('original', img)img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)img1 = np.zeros(img.shape, np.uint8) + 255img1 = cv2.drawContours(img1, contours, -1, (0,0,255), 2)cv2.imshow('Contours',img1)arcl = cv2.arcLength(contours[0], True)img2 = img1.copy()app = cv2.approxPolyDP(contours[0], arcl*0.05, True)img2 = cv2.drawContours(img2, [app], -1, (255,0,0), 2)cv2.imshow('contours',img2)cv2.waitKey(0)cv2.destroyAllWindows()
文章图片
五、轮廓的凸包 cv2.convexHull()函数用于返回轮廓的凸包,其基本格式如下:
hull = cv2.convexHull(contours[, clockwise[, returnPointss]])hull为返回的凸包, 是一个numpy.ndarray对象, 包含了凸包的关键点contours为轮廓clockwise为方向标记, 为True时, 凸包为顺时针方向, 为False(默认值)时, 凸包为逆时针方向returnPointss为True时(默认值)时, 返回的hull中包含的是凸包关键点的坐标, 为False时, 返回的是凸包关键点在轮廓中的索引
img = cv2.imread('shape3.jpg')img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)img1 = np.zeros(img.shape, np.uint8) + 255img1 = cv2.drawContours(img1, contours, -1, (0,0,255), 2)cv2.imshow('Contours',img1)hull = cv2.convexHull(contours[0])print('returnPoints = Treu 时返回的凸包; \n',hull)hull2 = cv2.convexHull(contours[0], returnPoints=False)print('returnPoints = False时返回的凸包; \n',hull2)cv2.polylines(img1, [hull], True, (255,0,0),2)cv2.imshow('ConvecHull',img1)cv2.waitKey(0)cv2.destroyAllWindows()
文章图片
文章图片
六、轮廓的直边界矩形 轮廓的直边界矩形是指可容纳轮廓的矩形,且矩形的两条边必须是平行的,直边界矩形不一定是面积最小的边界矩形。
cv2.boundingRect()函数用于返回轮廓的直边界矩形,其基本格式如下:
ret = cv2.boundingRect(contours)ret为返回的直边界矩形, 它是一个四元组, 其格式为(矩形左上角x坐标, 矩形左上角y坐标, 矩形的宽度, 矩形的高度)contours为用于计算直边界矩形的轮廓
img = cv2.imread('shape4.jpg')cv2.imshow('original', img)img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)img1 = np.zeros(img.shape, np.uint8) + 255img1 = cv2.drawContours(img1, contours, -1, (0,0,255), 2)cv2.imshow('Contours',img1)ret = cv2.boundingRect(contours[0])print('直边界矩形:\n', ret)pt1 = (ret[0], ret[1])pt2 = (ret[0] + ret[2], ret[1] + ret[3])img2 = img1.copy()img2 = cv2.rectangle(img2, pt1, pt2, (255,0,0), 1)cv2.imshow('Rectangle', img2)cv2.waitKey(0)cv2.destroyAllWindows()
文章图片
文章图片
七、轮廓的旋转矩形 轮廓的旋转矩形是指可容纳轮廓的面积最小的矩形。
cv2.minAreaRect()函数用于返回轮廓的旋转矩形,其基本格式如下:
box = cv2.minAreaRect(contour)box为返回的旋转矩阵, 它是一个三元组, 其格式为((矩形中心点x坐标, 矩形中心点y坐标), (矩形的宽度, 矩形的高度), 矩形的旋转角度)contour为用于计算矩形的轮廓
cv2.minAreaRect()函数返回的结果不能直接用于绘制旋转矩形,可以使用cv2.boxPoints()函数将其转换为矩形的顶点坐标,其基本格式如下:
points = cv2.boxPoints(box)points为返回的矩形顶点坐标, 坐标数据为浮点数box为cv2.minAreaRect()函数返回的矩形数据
img = cv2.imread('shape4.jpg')cv2.imshow('original', img)img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)img1 = np.zeros(img.shape, np.uint8) + 255cv2.drawContours(img1, contours, -1, (0,0,255) ,2)cv2.imshow('Contours',img1)# 计算最小旋转矩形ret = cv2.minAreaRect(contours[0])rect = cv2.boxPoints(ret)rect = np.int0(rect)img2 = img1.copy()cv2.drawContours(img2, [rect], 0, (255,0,0), 2)cv2.imshow('Rectangle', img2)cv2.waitKey(0)cv2.destroyAllWindows()
文章图片
八、轮廓的最小外包圆 cv2.minEnclosingCircle()函数用于返回可容纳轮廓的最小外包圆,其基本格式如下:
center, radius = cv2.minEnclosingCircle(contours)center为圆心radius为半径contours为用于计算最小外包圆的轮廓
img = cv2.imread('shape4.jpg')cv2.imshow('original', img)img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)img1 = np.zeros(img.shape, np.uint8) + 255cv2.drawContours(img1, contours, -1, (0,0,255) ,2)cv2.imshow('Contours',img1)# 计算最小外包圆(x, y), radius = cv2.minEnclosingCircle(contours[0])center = (int(x),int(y))radius = int(radius)img2 = img1.copy()cv2.circle(img2, center, radius, (255,0,0),2)cv2.imshow('Circle',img2)cv2.waitKey(0)cv2.destroyAllWindows()
文章图片
九、轮廓的拟合椭圆 cv2.fitEllipse()函数用于返回轮廓的拟合椭圆,其基本格式如下:
ellipse = cv2.fitEllipse(contours)ellipse为返回的椭圆contours为用于计算拟合椭圆的轮廓
img = cv2.imread('shape4.jpg')cv2.imshow('original', img)img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)img1 = np.zeros(img.shape, np.uint8) + 255cv2.drawContours(img1, contours, -1, (0,0,255) ,2)cv2.imshow('Contours',img1)# 计算拟合椭圆ellipse = cv2.fitEllipse(contours[0])img2 = img1.copy()cv2.ellipse(img2, ellipse, (255,0,0),2)cv2.imshow('Circle',img2)cv2.waitKey(0)cv2.destroyAllWindows()
文章图片
十、轮廓的拟合直线 cv2.fitLine()函数用于返回轮廓的拟合直线,其基本格式如下:
line = cv2.fitLine(contours, distType, param, reps, aeps)line为返回的拟合直线contours为用于计算拟合直线的轮廓distType为距离参数类型, 决定如何计算拟合直线param为距离参数, 与距离参数类型有关, 其设置为0时, 函数将自动选择最优值reps为计算拟合直线需要的径向精度, 通常设置为0.01aeps为计算拟合直线需要的轴向精度, 通常设置为0.01
param距离参数类型:
文章图片
img = cv2.imread('shape4.jpg')cv2.imshow('original', img)img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)img1 = np.zeros(img.shape, np.uint8) + 255cv2.drawContours(img1, contours, -1, (0,0,255), 2)cv2.imshow('Contours',img1)#计算拟合直线img2 = img1.copy()rows, cols = img.shape[:2][vx, vy, x, y] = cv2.fitLine(contours[0], cv2.DIST_L1, 0, 0.01, 0.01)lefty = int((-x * vy / vx) + y)righty = int(((cols - x) * vy / vx) + y)cv2.line(img2, (0, lefty), (cols-1, righty), (255,0,0), 2)cv2.imshow('FitLine',img2)cv2.waitKey(0)cv2.destroyAllWindows()
文章图片
十一、轮廓的最小外包三角形 cv2.minEnclosingTriangle()函数用于返回可容纳轮廓的最小外包三角形,其基本格式如下:
retval, triangle = cv2.minEnclosingTriangle(contours)retval为最小外包三角形的面积triangle为最小外包三角形contours为用于计算最小外包三角形的轮廓
img = cv2.imread('shape4.jpg')cv2.imshow('original', img)img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY)contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)img1 = np.zeros(img.shape, np.uint8) + 255cv2.drawContours(img1, contours, -1, (0,0,255) ,2)cv2.imshow('Contours',img1)# 计算最小外包三角形retval, triangle = cv2.minEnclosingTriangle(contours[0])triangle = np.int0(triangle)img2 = img1.copy()cv2.polylines(img2, [triangle], True, (255,0,0),2)cv2.imshow('Triangle',img2)cv2.waitKey(0)cv2.destroyAllWindows()
文章图片
【OpenCV-Python图像轮廓之轮廓特征详解】以上就是OpenCV-Python图像轮廓之轮廓特征详解的详细内容,更多关于OpenCV-Python轮廓特征的资料请关注脚本之家其它相关文章!
推荐阅读
- Java|Java OpenCV图像处理之SIFT角点检测详解
- ImageLoaders 加载图像
- JAVA图像处理系列(四)——噪声
- OpenCV|OpenCV-Python实战(18)——深度学习简介与入门示例
- 使用交叉点观察器延迟加载图像以提高性能
- Figure|Figure 图像
- 【数组题】给定一个二进制矩阵|【数组题】给定一个二进制矩阵 A,我们想先水平翻转图像,然后反转图像并返回结果。
- opencv|图像处理之椒盐噪声的添加与去除
- ACDSee|ACDSee Photo Studio 5——数字图像处理软件
- 详解如何使用Python隐藏图像中的数据