数据结构与算法|leetcode笔记(Best Time to Buy and Sell Stock IV)

一. 题目描述
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most k transactions.
【数据结构与算法|leetcode笔记(Best Time to Buy and Sell Stock IV)】Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
二. 题目分析
这一题的难度要远高于前面几题,需要用到动态规划,代码参考了博客:http://www.cnblogs.com/grandyang/p/4295761.html
这里需要两个递推公式来分别更新两个变量localglobal,然后求至少k次交易的最大利润。我们定义local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,此为局部最优。然后我们定义global[i][j]为在到达第i天时最多可进行j次交易的最大利润,此为全局最优。它们的递推式为:
local[i][j] = max(global[i - 1][j - 1] + max(diff, 0), local[i - 1][j] + diff)
global[i][j] = max(local[i][j], global[i - 1][j])
三. 示例代码

#include #include #include #include #include using namespace std; class Solution { public: int maxProfit(int k, vector &prices) { if(prices.empty() || k == 0) return 0; if(k >= prices.size()) return solveMaxProfit(prices); vector global(k + 1, 0); vector local(k + 1, 0); for(int i = 1; i < prices.size(); i++) { int diff = prices[i] - prices[i - 1]; for(int j = k; j >= 1; j--) { local[j] = max(local[j] + diff, global[j - 1] + max(diff, 0)); global[j] = max(global[j], local[j]); } }return global[k]; }private: int solveMaxProfit(vector &prices) { int res = 0; for(int i = 1; i < prices.size(); i++) { int diff = prices[i] - prices[i - 1]; if(diff > 0) res += diff; } return res; } };

四. 小结
参考链接:http://www.cnblogs.com/grandyang/p/4295761.html

    推荐阅读