ALS推荐系统实战

【ALS推荐系统实战】拿到某超市的销售数据,将数据整理后得到一年三千万条交易记录,想试试用spark中的推荐系统做一下预测
先把数据导入到HDFS中,数据需要用户id,商品id,和购买次数,这里我拿购买次数当作电影推荐系统中的电影评分
HDFS中的数据用":"分割开。如下:

461365:22535:1.0 461365:5059:1.0 461365:5420:4.0 461366:1987:4.0 461366:31911:1.0


进入spark-shell
引入需要的mllib包和日志的设置

import org.apache.spark.mllib.recommendation.{ALS, Rating,MatrixFactorizationModel} import org.apache.spark.sql.hive.HiveContext import org.apache.log4j.{Logger,Level} import org.apache.spark.mllib.evaluation.{RankingMetrics, RegressionMetrics} Logger.getLogger("org.apache.spark").setLevel(Level.WARN) Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)


将数据导入,并划分好存入ratings,这里的rating其实就是购买次数

val data = https://www.it610.com/article/sc.textFile("/input/rate") val ratings = data.map(_.split(':') match { case Array(user, item, rate) =>Rating(user.toInt, item.toInt, rate.toDouble)})


查看数据规模

scala> val users = ratings.map(_.user).distinct() users: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[1356] at distinct at :35scala> val products = ratings.map(_.product).distinct() products: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[1360] at distinct at :35scala> println("Got "+ratings.count()+" ratings from "+users.count+" users on "+products.count+" products.") Got 30299054 ratings from 354172 users on 45786 products.


将数据划分,我这里用的8:2,

val splits = ratings.randomSplit(Array(0.8, 0.2)) val training = splits(0) val test = splits(1)


进行训练,并设置参数
Rank: 对应ALS模型中的因子个数,即矩阵分解出的两个矩阵的新的行/列数
numIterations:模型迭代最大次数
参数0.01: 控制模型的正则化过程,从而控制模型的过拟合情况。

val rank = 30 val numIterations = 12 val model = ALS.train(training, rank, numIterations, 0.01)

然后将训练结果得到的预测分和原始分合并在一起,算出rmse

val testUsersProducts = test.map { case Rating(user, product, rate) => (user, product) } val predictions = model.predict(testUsersProducts).map { case Rating(user, product, rate) => ((user, product), rate) } val ratesAndPreds = ratings.map { case Rating(user, product, rate) => ((user, product), rate) }.join(predictions) val rmse= math.sqrt(ratesAndPreds.map { case ((user, product), (r1, r2)) => val err = (r1 - r2) err * err }.mean())




    推荐阅读