应用scikit-learn做文本分类
文本挖掘的paper没找到统一的benchmark,只好自己跑程序,走过路过的前辈如果知道20newsgroups或者其它好用的公共数据集的分类(最好要所有类分类结果,全部或取部分特征无所谓)麻烦留言告知下现在的benchmark,万谢!
嗯,说正文。20newsgroups官网上给出了3个数据集,这里我们用最原始的20news-19997.tar.gz。
分为以下几个过程:
- 加载数据集
- 提feature
- 分类
- Naive Bayes
- KNN
- SVM
- 聚类
Environment: Python 2.7 + Scipy (scikit-learn)
1.加载数据集
从20news-19997.tar.gz下载数据集,解压到scikit_learn_data文件夹下,加载数据,详见code注释。 [python] view plain copy
- #firstextractthe20news_groupdatasetto/scikit_learn_data
- fromsklearn.datasetsimportfetch_20newsgroups
- #allcategories
- #newsgroup_train=fetch_20newsgroups(subset='train')
- #partcategories
- categories=['comp.graphics',
- 'comp.os.ms-windows.misc',
- 'comp.sys.ibm.pc.hardware',
- 'comp.sys.mac.hardware',
- 'comp.windows.x'];
- newsgroup_train=fetch_20newsgroups(subset='train',categories=categories);
可以检验是否load好了: [python] view plain copy
- #printcategorynames
- frompprintimportpprint
- pprint(list(newsgroup_train.target_names))
结果: ['comp.graphics',
'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware',
'comp.sys.mac.hardware',
'comp.windows.x']
2. 提feature: 刚才load进来的newsgroup_train就是一篇篇document,我们要从中提取feature,即词频啊神马的,用fit_transform
Method 1. HashingVectorizer,规定feature个数
[python] view plain copy
- #newsgroup_train.dataistheoriginaldocuments,butweneedtoextractthe
- #featurevectorsinordertomodelthetextdata
- fromsklearn.feature_extraction.textimportHashingVectorizer
- vectorizer=HashingVectorizer(stop_words='english',non_negative=True,
- n_features=10000)
- fea_train=vectorizer.fit_transform(newsgroup_train.data)
- fea_test=vectorizer.fit_transform(newsgroups_test.data);
- #returnfeaturevector'fea_train'[n_samples,n_features]
- print'Sizeoffea_train:'+repr(fea_train.shape)
- print'Sizeoffea_train:'+repr(fea_test.shape)
- #11314documents,130107vectorsforallcategories
- print'Theaveragefeaturesparsityis{0:.3f}%'.format(
- fea_train.nnz/float(fea_train.shape[0]*fea_train.shape[1])*100);
结果: Size of fea_train:(2936, 10000)
Size of fea_train:(1955, 10000)
The average feature sparsity is 1.002%
因为我们只取了10000个词,即10000维feature,稀疏度还不算低。而实际上用TfidfVectorizer统计可得到上万维的feature,我统计的全部样本是13w多维,就是一个相当稀疏的矩阵了。
************************************************************************************************************************** 上面代码注释说TF-IDF在train和test上提取的feature维度不同,那么怎么让它们相同呢?有两种方法:
Method 2.CountVectorizer+TfidfTransformer
让两个CountVectorizer共享vocabulary: [python] view plain copy
- #----------------------------------------------------
- #method1:CountVectorizer+TfidfTransformer
- print'*************************\nCountVectorizer+TfidfTransformer\n*************************'
- fromsklearn.feature_extraction.textimportCountVectorizer,TfidfTransformer
- count_v1=CountVectorizer(stop_words='english',max_df=0.5);
- counts_train=count_v1.fit_transform(newsgroup_train.data);
- print"theshapeoftrainis"+repr(counts_train.shape)
- count_v2=CountVectorizer(vocabulary=count_v1.vocabulary_);
- counts_test=count_v2.fit_transform(newsgroups_test.data);
- print"theshapeoftestis"+repr(counts_test.shape)
- tfidftransformer=TfidfTransformer();
- tfidf_train=tfidftransformer.fit(counts_train).transform(counts_train);
- tfidf_test=tfidftransformer.fit(counts_test).transform(counts_test);
结果: ************************* CountVectorizer+TfidfTransformer
*************************
the shape of train is (2936, 66433)
the shape of test is (1955, 66433)
Method 3.TfidfVectorizer
让两个TfidfVectorizer共享vocabulary: [python] view plain copy
- #method2:TfidfVectorizer
- print'*************************\nTfidfVectorizer\n*************************'
- fromsklearn.feature_extraction.textimportTfidfVectorizer
- tv=TfidfVectorizer(sublinear_tf=True,
- max_df=0.5,
- stop_words='english');
- tfidf_train_2=tv.fit_transform(newsgroup_train.data);
- tv2=TfidfVectorizer(vocabulary=tv.vocabulary_);
- tfidf_test_2=tv2.fit_transform(newsgroups_test.data);
- print"theshapeoftrainis"+repr(tfidf_train_2.shape)
- print"theshapeoftestis"+repr(tfidf_test_2.shape)
- analyze=tv.build_analyzer()
- tv.get_feature_names()#statisticalfeatures/terms
结果: *************************
TfidfVectorizer
*************************
the shape of train is (2936, 66433)
the shape of test is (1955, 66433)
此外,还有sklearn里封装好的抓feature函数,fetch_20newsgroups_vectorized
Method 4.fetch_20newsgroups_vectorized
但是这种方法不能挑出几个类的feature,只能全部20个类的feature全部弄出来:
[python] view plain copy
- print'*************************\nfetch_20newsgroups_vectorized\n*************************'
- fromsklearn.datasetsimportfetch_20newsgroups_vectorized
- tfidf_train_3=fetch_20newsgroups_vectorized(subset='train');
- tfidf_test_3=fetch_20newsgroups_vectorized(subset='test');
- print"theshapeoftrainis"+repr(tfidf_train_3.data.shape)
- print"theshapeoftestis"+repr(tfidf_test_3.data.shape)
结果: *************************
fetch_20newsgroups_vectorized
*************************
the shape of train is (11314, 130107)
the shape of test is (7532, 130107)
3. 分类 3.1 Multinomial Naive Bayes Classifier 见代码&comment,不解释 [python] view plain copy
- ######################################################
- #MultinomialNaiveBayesClassifier
- print'*************************\nNaiveBayes\n*************************'
- fromsklearn.naive_bayesimportMultinomialNB
- fromsklearnimportmetrics
- newsgroups_test=fetch_20newsgroups(subset='test',
- categories=categories);
- fea_test=vectorizer.fit_transform(newsgroups_test.data);
- #createtheMultinomialNaiveBayesianClassifier
- clf=MultinomialNB(alpha=0.01)
- clf.fit(fea_train,newsgroup_train.target);
- pred=clf.predict(fea_test);
- calculate_result(newsgroups_test.target,pred);
- #noticeherewecanseethatf1_scoreisnotequalto2*precision*recall/(precision+recall)
- #becausethem_precisionandm_recallwegetisaveraged,however,metrics.f1_score()calculates
- #weithedaverage,i.e.,takesintothenumberofeachclassintoconsideration.
注意我最后的3行注释,为什么f1≠2*(准确率*召回率)/(准确率+召回率)
其中,函数calculate_result计算f1:
[python] view plain copy
- defcalculate_result(actual,pred):
- m_precision=metrics.precision_score(actual,pred);
- m_recall=metrics.recall_score(actual,pred);
- print'predictinfo:'
- print'precision:{0:.3f}'.format(m_precision)
- print'recall:{0:0.3f}'.format(m_recall);
- print'f1-score:{0:.3f}'.format(metrics.f1_score(actual,pred));
3.2 KNN:
[python] view plain copy
- ######################################################
- #KNNClassifier
- fromsklearn.neighborsimportKNeighborsClassifier
- print'*************************\nKNN\n*************************'
- knnclf=KNeighborsClassifier()#defaultwithk=5
- knnclf.fit(fea_train,newsgroup_train.target)
- pred=knnclf.predict(fea_test);
- calculate_result(newsgroups_test.target,pred);
3.3 SVM:
[cpp] view plain copy
- ######################################################
- #SVMClassifier
- fromsklearn.svmimportSVC
- print'*************************\nSVM\n*************************'
- svclf=SVC(kernel='linear')#defaultwith'rbf'
- svclf.fit(fea_train,newsgroup_train.target)
- pred=svclf.predict(fea_test);
- calculate_result(newsgroups_test.target,pred);
结果:
*************************
Naive Bayes
*************************
predict info:
precision:0.764
recall:0.759
f1-score:0.760
*************************
KNN
*************************
predict info:
precision:0.642
recall:0.635
f1-score:0.636
*************************
SVM
*************************
predict info:
precision:0.777
recall:0.774
f1-score:0.774
4. 聚类
[cpp] view plain copy
- ######################################################
- #KMeansCluster
- fromsklearn.clusterimportKMeans
- print'*************************\nKMeans\n*************************'
- pred=KMeans(n_clusters=5)
- pred.fit(fea_test)
- calculate_result(newsgroups_test.target,pred.labels_);
结果:
*************************
KMeans
*************************
predict info:
precision:0.264
recall:0.226
f1-score:0.213
本文全部代码下载:在此
貌似准确率好低……那我们用全部特征吧……结果如下:
【应用scikit-learn做文本分类】 *************************
Naive Bayes
*************************
predict info:
precision:0.771
recall:0.770
f1-score:0.769
*************************
KNN
*************************
predict info:
precision:0.652
recall:0.645
f1-score:0.645
*************************
SVM
*************************
predict info:
precision:0.819
recall:0.816
f1-score:0.816
*************************
KMeans
*************************
predict info:
precision:0.289
recall:0.313
f1-score:0.266
推荐阅读
- 我要做大厨
- Docker应用:容器间通信与Mariadb数据库主从复制
- 2.6|2.6 Photoshop操作步骤的撤消和重做 [Ps教程]
- JS中的各种宽高度定义及其应用
- 我从来不做坏事
- 子龙老师语录
- 做一件事情的基本原理是什么()
- 做个俗物有什么不好
- 28岁|28岁,做一个通透又自由的姑娘。
- 良心