基于深度学习的文本分类
- 使用gensim训练word2vec
使用gensim训练word2vec 本DEMO只使用部分数据,使用全部数据预训练的词向量地址:
【Task5 基于深度学习的文本分类2-1Word2Vec】链接: https://pan.baidu.com/s/1ewlck3zwXVQuAzraZ26Euw 提取码: qbpr
import logging
import randomimport numpy as np
import torchlogging.basicConfig(level=logging.INFO, format='%(asctime)-15s %(levelname)s: %(message)s')# set seed
seed = 666
random.seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed)
torch.manual_seed(seed)
# split data to 10 fold
fold_num = 10
data_file = '../data/train_set.csv'
import pandas as pddef all_data2fold(fold_num, num=10000):
fold_data = https://www.it610.com/article/[]
f = pd.read_csv(data_file, sep='\t', encoding='UTF-8')
texts = f['text'].tolist()[:num]
labels = f['label'].tolist()[:num]total = len(labels)index = list(range(total))
np.random.shuffle(index)all_texts = []
all_labels = []
for i in index:
all_texts.append(texts[i])
all_labels.append(labels[i])label2id = {}
for i in range(total):
label = str(all_labels[i])
if label not in label2id:
label2id[label] = [i]
else:
label2id[label].append(i)all_index = [[] for _ in range(fold_num)]
for label, data in label2id.items():
# print(label, len(data))
batch_size = int(len(data) / fold_num)
other = len(data) - batch_size * fold_num
for i in range(fold_num):
cur_batch_size = batch_size + 1 if i < other else batch_size
# print(cur_batch_size)
batch_data = https://www.it610.com/article/[data[i * batch_size + b] for b in range(cur_batch_size)]
all_index[i].extend(batch_data)batch_size = int(total / fold_num)
other_texts = []
other_labels = []
other_num = 0
start = 0
for fold in range(fold_num):
num = len(all_index[fold])
texts = [all_texts[i] for i in all_index[fold]]
labels = [all_labels[i] for i in all_index[fold]]if num> batch_size:
fold_texts = texts[:batch_size]
other_texts.extend(texts[batch_size:])
fold_labels = labels[:batch_size]
other_labels.extend(labels[batch_size:])
other_num += num - batch_size
elif num < batch_size:
end = start + batch_size - num
fold_texts = texts + other_texts[start: end]
fold_labels = labels + other_labels[start: end]
start = end
else:
fold_texts = texts
fold_labels = labelsassert batch_size == len(fold_labels)# shuffle
index = list(range(batch_size))
np.random.shuffle(index)shuffle_fold_texts = []
shuffle_fold_labels = []
for i in index:
shuffle_fold_texts.append(fold_texts[i])
shuffle_fold_labels.append(fold_labels[i])data = https://www.it610.com/article/{'label': shuffle_fold_labels, 'text': shuffle_fold_texts}
fold_data.append(data)logging.info("Fold lens %s", str([len(data['label']) for data in fold_data]))return fold_datafold_data = https://www.it610.com/article/all_data2fold(10)
# build train data for word2vec
fold_id = 9train_texts = []
for i in range(0, fold_id):
data = https://www.it610.com/article/fold_data[i]
train_texts.extend(data['text'])logging.info('Total %d docs.' % len(train_texts))
logging.info('Start training...')
from gensim.models.word2vec import Word2Vecnum_features = 100# Word vector dimensionality
num_workers = 8# Number of threads to run in paralleltrain_texts = list(map(lambda x: list(x.split()), train_texts))
model = Word2Vec(train_texts, workers=num_workers, size=num_features)
model.init_sims(replace=True)# save model
model.save("./word2vec.bin")
# load model
model = Word2Vec.load("./word2vec.bin")# convert format
model.wv.save_word2vec_format('./word2vec.txt', binary=False)
推荐阅读
- 人工智能|hugginface-introduction 案例介绍
- 深度学习|论文阅读(《Deep Interest Evolution Network for Click-Through Rate Prediction》)
- nlp|Keras(十一)梯度带(GradientTape)的基本使用方法,与tf.keras结合使用
- NER|[论文阅读笔记01]Neural Architectures for Nested NER through Linearization
- 深度学习|2019年CS224N课程笔记-Lecture 17:Multitask Learning
- 深度学习|[深度学习] 一篇文章理解 word2vec
- 论文|预训练模型综述2020年三月《Pre-trained Models for Natural Language Processing: A Survey》
- NLP|NLP预训练模型综述
- NLP之文本表示——二值文本表示
- 隐马尔科夫HMM应用于中文分词