原文:http://www.hankcs.com/nlp/hmm-and-segmentation-tagging-named-entity-recognition.html
HMM(隐马尔可夫模型)是用来描述隐含未知参数的统计模型,举一个经典的例子:一个东京的朋友每天根据天气{下雨,天晴}决定当天的活动{公园散步,购物,清理房间}中的一种,我每天只能在twitter上看到她发的推“啊,我前天公园散步、昨天购物、今天清理房间了!”,那么我可以根据她发的推特推断东京这三天的天气。在这个例子里,显状态是活动,隐状态是天气。
2014年11月23日更新:HMM描述 任何一个HMM都可以通过下列五元组来描述:
我已利用HMM角色标注实现了中国人名、翻译人名、日本人名、地名、机构名等命名实体的识别,请参考此目录命名实体识别。
:param obs:观测序列
:param states:隐状态
:param start_p:初始概率(隐状态)
:param trans_p:转移概率(隐状态)
:param emit_p: 发射概率 (隐状态表现为显状态的概率)
文章图片
例子描述 这个例子可以用如下的HMM来描述:
- states = ('Rainy', 'Sunny')
- observations = ('walk', 'shop', 'clean')
- start_probability = {'Rainy': 0.6, 'Sunny': 0.4}
- transition_probability = {
- 'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},
- 'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6},
- }
- emission_probability = {
- 'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},
- 'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},
- }
稍微用中文讲讲思路,很明显,第一天天晴还是下雨可以算出来:
- 定义V[时间][今天天气] = 概率,注意今天天气指的是,前几天的天气都确定下来了(概率最大)今天天气是X的概率,这里的概率就是一个累乘的概率了。
- 因为第一天我的朋友去散步了,所以第一天下雨的概率V[第一天][下雨] = 初始概率[下雨] * 发射概率[下雨][散步] = 0.6 * 0.1 = 0.06,同理可得V[第一天][天晴] = 0.24 。从直觉上来看,因为第一天朋友出门了,她一般喜欢在天晴的时候散步,所以第一天天晴的概率比较大,数字与直觉统一了。【不大恰当】
- 从第二天开始,对于每种天气Y,都有前一天天气是X的概率 * X转移到Y的概率 * Y天气下朋友进行这天这种活动的概率。因为前一天天气X有两种可能,所以Y的概率有两个,选取其中较大一个作为V[第二天][天气Y]的概率,同时将今天的天气加入到结果序列中
- 比较V[最后一天][下雨]和[最后一天][天晴]的概率,找出较大的哪一个对应的序列,就是最终结果。
# -*- coding:utf-8 -*-
# Filename: viterbi.py
# Author:hankcs
# Date: 2014-05-13 下午8:51
states = ('Rainy', 'Sunny')
observations = ('walk', 'shop', 'clean')
start_probability = {'Rainy': 0.6, 'Sunny': 0.4}
transition_probability = {
'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},
'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6},
}
emission_probability = {
'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},
'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},
}
# 打印路径概率表
def print_dptable(V):
print "",
for i in range(len(V)): print "%7d" % i,
print
for y in V[0].keys():
print "%.5s: " % y,
for t in range(len(V)):
print "%.7s" % ("%f" % V[t][y]),
print
def viterbi(obs, states, start_p, trans_p, emit_p):
"""
:param obs:观测序列
:param states:隐状态
:param start_p:初始概率(隐状态)
:param trans_p:转移概率(隐状态)
:param emit_p: 发射概率 (隐状态表现为显状态的概率)
:return:
"""
# 路径概率表 V[时间][隐状态] = 概率
V = [{}]
# 一个中间变量,代表当前状态是哪个隐状态
path = {}
# 初始化初始状态 (t == 0)
for y in states:
V[0][y] = start_p[y] * emit_p[y][obs[0]]
path[y] = [y]
# 对 t > 0 跑一遍维特比算法
for t in range(1, len(obs)):
V.append({})
newpath = {}
for y in states:
# 概率 隐状态 =前状态是y0的概率 * y0转移到y的概率 * y表现为当前状态的概率
(prob, state) = max([(V[t - 1][y0] * trans_p[y0][y] * emit_p[y][obs[t]], y0) for y0 in states])
# 记录最大概率
V[t][y] = prob
# 记录路径
newpath[y] = path[state] + [y]
# 不需要保留旧路径
path = newpath
print_dptable(V)
(prob, state) = max([(V[len(obs) - 1][y], y) for y in states])
return (prob, path[state])
def example():
return viterbi(observations,
states,
start_probability,
transition_probability,
emission_probability)
print example()
输出:
- 012
- Rainy:0.06000 0.03840 0.01344
- Sunny:0.24000 0.04320 0.00259
- (0.01344, ['Sunny', 'Rainy', 'Rainy'])
- 词性标注:给定一个词的序列(也就是句子),找出最可能的词性序列(标签是词性)。如ansj分词和ICTCLAS分词等。
- 分词:给定一个字的序列,找出最可能的标签序列(断句符号:[词尾]或[非词尾]构成的序列)。结巴分词目前就是利用BMES标签来分词的,B(开头),M(中间),E(结尾),S(独立成词)
- 命名实体识别:给定一个词的序列,找出最可能的标签序列(内外符号:[内]表示词属于命名实体,[外]表示不属于)。如ICTCLAS实现的人名识别、翻译人名识别、地名识别都是用同一个Tagger实现的。
推荐阅读
- paddle|动手从头实现LSTM
- 人工智能|干货!人体姿态估计与运动预测
- 推荐系统论文进阶|CTR预估 论文精读(十一)--Deep Interest Evolution Network(DIEN)
- Python专栏|数据分析的常规流程
- 读书笔记|《白话大数据和机器学习》学习笔记1
- Pytorch学习|sklearn-SVM 模型保存、交叉验证与网格搜索
- Python机器学习基础与进阶|Python机器学习--集成学习算法--XGBoost算法
- 深度学习|深度学习笔记总结
- 机器学习|机器学习Sklearn学习总结
- 机器学习|线性回归原理与python实现