1.before 目前深度网络模型压缩方法主要有以下几个方向:
- 更精细的模型设计:SqueezeNet、MobileNet等
- 模型裁剪:队训练好的模型找到一种评价手段,剔除不重要的 connections 和 filrers
- 核稀疏: 训练过程中对权重更新进行诱导,让其稀疏。使用稀疏矩阵在硬件上效果不明显
可以参考的论文有:
- Learning Structured Sparsity in Deep Neural Networks
文章图片
该方法是regular的方法,压缩粒度较粗,可以适用于各种现成的算法库,但是训练的收敛性和优化难度不确定。
源码
- Dynamic Network Surgery for Efficient DNNs
文章图片
在W上增加一个T来实现,T为一个2值矩阵,起到的相当于一个mask的功能,当某个位置为1时,将该位置的weight保留,为0时,裁剪。
文章图片
接相结合、训练与压缩相同步的策略完成网络压缩任务。通过网络嫁接操作的引入,避免了错误剪枝所造成的性能损失,从而在实际操作中更好地逼近网络压缩的理论极限。属于irregular的方式,但是ak和bk的值在不同的模型以及不同的层中无法确定,并且容易受到稀疏矩阵算法库以及带宽的限制 源码、
- Training Skinny Deep Neural Networks with Iterative Hard Thresholding Methods
文章图片
正常训练网络s1轮,然后Ok(W)表示选出W中数值最大的k个数,而将剩下的值置为0,supp(W,k)表示W中最大的k个值的序号,继续训练s2轮,仅更新非0的W,然后再将之前置为0的W放开进行更新,继续训练s1轮,这样反复直至训练完毕。 同样也是对参数进行诱导的方式,边训练边裁剪,先将认为不重要的值裁掉,再通过一个restore的过程将重要却被误裁的参数恢复回来。也是属于irregular的方式,边训边裁,性能不错,压缩的力度难以保证。
推荐阅读
- 学习笔记|uni-app开发小程序
- java计算文本MD5值
- Android圆形进度条控件-CircleSeekBar
- 学习笔记|安卓中一些界面过场动画的实现
- MongoDB-存储
- 学习笔记|Burnside引理和polay计数学习笔记
- Python|【网易2019年秋招笔试题】编程题第二题(香槟塔里倒香槟——参考代码和编程思路)
- Android|安装APP损坏,出现[INSTALL_FAILED_DEXOPT]的解决办法
- Android|java日期格式化
- Android|android 读取json数据(遍历JSONObject和JSONArray