【毕设进行时-工业大数据,数据挖掘】用C++对数据进行整改,修缮一下!

正文之前

因为数据差距实在太大,从10-10000都有,要是全搞决策树我估计我是啥都不用搞了,看着电脑卡死就ok!所以特地将连续的数据转化为连续的数据!看看是不是会生成新的、更好地决策树!
正文 废话不多说!直接丢代码!不然真是难受的一批!写了好一会儿才搞定的!
#include #include #include using namespace std; int main() { int count=0; float attr[34]; ifstream in("/Users/zhangzhaobo/Documents/Graduation-Design/Mydata.txt"); ofstream out("/Users/zhangzhaobo/Documents/Graduation-Design/Data/New_Data.txt"); string line[34]; for (int i = 0; i < 34; ++i) { in>>line[i]; } out<<"Diff_X"<<"\t"<<"Diff_Y"<<"\t"; for (int i = 4; i < 8; ++i) { out<>attr[i]; } float X_dis=attr[1]-attr[0]; float Y_dis=attr[3]-attr[2]; float Luminosity_dis=attr[9]-attr[8]; float TypeOfSteel=attr[11]; out<
正文
改善之后的属性为:
Diff_XDiff_YPixels_AreasX_Perimeter Y_Perimeter Sum_of_LuminosityDiff_Luminosity Length_of_ConveyerTypeouOfSteelSteel_Plate_ThicknessEdges_Index Empty_Index Square_IndexOutside_X_Index Edges_X_IndexEdges_Y_IndexOutside_Global_IndexLogOfAreasLog_X_Index Log_Y_Index Orientation_IndexLuminosity_IndexSigmoidOfAreasFault 844267 1744242203216871800.04980.24150.18180.00470.4706112.42650.90311.64350.8182-0.2913 0.5822128 629108 1030113973916871800.76470.37930.20690.00360.6 0.966712.03340.77821.46240.7931-0.1756 0.2984128

为此还特地写了个C++的程序来观察!
#include #include #include using namespace std; int main() { string line[72]; int count=0; for (int i = 0; i < 72; ++i) { cin>>line[i]; } for (int i = 0; i < 24; ++i) { cout<<"[->"< "< "<

【【毕设进行时-工业大数据,数据挖掘】用C++对数据进行整改,修缮一下!】最后整出来还蛮好看!
[->0: Diff_X --> 8 --> 6 [->1: Diff_Y --> 44 --> 29 [->2: Pixels_Areas --> 267 --> 108 [->3: X_Perimeter --> 17 --> 10 [->4: Y_Perimeter --> 44 --> 30 [->5: Sum_of_Luminosity --> 24220 --> 11397 [->6: Diff_Luminosity --> 32 --> 39 [->7: Length_of_Conveyer --> 1687 --> 1687 [->8: TypeouOfSteel --> 1 --> 1 [->9: Steel_Plate_Thickness --> 80 --> 80 [->10: Edges_Index --> 0.0498 --> 0.7647 [->11: Empty_Index --> 0.2415 --> 0.3793 [->12: Square_Index --> 0.1818 --> 0.2069 [->13: Outside_X_Index --> 0.0047 --> 0.0036 [->14: Edges_X_Index --> 0.4706 --> 0.6 [->15: Edges_Y_Index --> 1 --> 0.9667 [->16: Outside_Global_Index --> 1 --> 1 [->17: LogOfAreas --> 2.4265 --> 2.0334 [->18: Log_X_Index --> 0.9031 --> 0.7782 [->19: Log_Y_Index --> 1.6435 --> 1.4624 [->20: Orientation_Index --> 0.8182 --> 0.7931 [->21: Luminosity_Index --> -0.2913 --> -0.1756 [->22: SigmoidOfAreas --> 0.5822 --> 0.2984 [->23: Fault --> 128 --> 128

    推荐阅读