机器学习具体算法|Bayesian Program Learning(贝叶斯程序学习)
Bayesian Program Learning 【机器学习具体算法|Bayesian Program Learning(贝叶斯程序学习)】「贝叶斯程序学习」(BPL,Bayesian Program Learning),能让计算机系统对人类认知进行很好的模拟。但现在有关bayesian的研究放缓。
传统的机器学习方法需要大量的数据来训练,而这种方法只需要一个粗略的模型,然后使用推理算法来分析案例,补充模型的细节。在数据量巨大但较混乱的情况下,深度学习能发挥优势;而在数据量少而清晰的情况下,贝叶斯学习占领上风。
例如:之前,开发了一个‘只看一眼就会写字’的计算机系统,还通过了图灵测试。他们创造的AI系统能够迅速学会写陌生的文字,从某种意义上说明它领悟到了字符的本质特征(也就是字符的总体结构),同时还能识别出非本质特征(也就是那些因书写造成的轻微变异)。
推荐阅读
- 由浅入深理解AOP
- 继续努力,自主学习家庭Day135(20181015)
- python学习之|python学习之 实现QQ自动发送消息
- 一起来学习C语言的字符串转换函数
- 定制一套英文学习方案
- 漫画初学者如何学习漫画背景的透视画法(这篇教程请收藏好了!)
- 《深度倾听》第5天──「RIA学习力」便签输出第16期
- 如何更好的去学习
- 【韩语学习】(韩语随堂笔记整理)
- 焦点学习田源分享第267天《来访》