2.4 效率
对于数据的协议 , 通过推送数据到客户端最大限度地提高性能和吞吐量的,而不是等待客户端拉数据 。这个概念,称之为 RDY 状态,基本上是客户端流量控制的一种形式 。
efficiency
2.5 心跳和超时
组合应用级别的心跳和 RDY 状态,避免头阻塞现象,也可能使心跳无用(即,如果消费者是在后面的处理消息流的接收缓冲区中,操作系统将被填满 , 堵心跳)为了保证进度,所有的网络 IO 时间上限势必与配置的心跳间隔相关联 。这意味着,你可以从字面上拔掉之间的网络连接 nsqd 和消费者,它会检测并正确处理错误 。当检测到一个致命错误 , 客户端连接被强制关闭 。在传输中的消息会超时而重新排队等待传递到另一个消费者 。最后,错误会被记录并累计到各种内部指标 。
2.6 分布式
因为NSQ没有在守护程序之间共享信息,所以它从一开始就是为了分布式操作而生 。个别的机器可以随便宕机随便启动而不会影响到系统的其余部分,消息发布者可以在本地发布,即使面对网络分区 。
这种“分布式优先”的设计理念意味着NSQ基本上可以永远不断地扩展,需要更高的吞吐量go语言用什么平台?那就添加更多的nsqd吧 。唯一的共享状态就是保存在lookup节点上,甚至它们不需要全局视图,配置某些nsqd注册到某些lookup节点上这是很简单的配置 , 唯一关键的地方就是消费者可以通过lookup节点获取所有完整的节点集 。清晰的故障事件——NSQ在组件内建立了一套明确关于可能导致故障的的故障权衡机制,这对消息传递和恢复都有意义 。虽然它们可能不像Kafka系统那样提供严格的保证级别,但NSQ简单的操作使故障情况非常明显 。
2.7 no replication
不像其他的队列组件,NSQ并没有提供任何形式的复制和集群,也正是这点让它能够如此简单地运行,但它确实对于一些高保证性高可靠性的消息发布没有足够的保证 。我们可以通过降低文件同步的时间来部分避免,只需通过一个标志配置 , 通过EBS支持我们的队列 。但是这样仍然存在一个消息被发布后马上死亡,丢失了有效的写入的情况 。
2.8 没有严格的顺序
虽然Kafka由一个有序的日志构成 , 但NSQ不是 。消息可以在任何时间以任何顺序进入队列 。在我们使用的案例中 , 这通常没有关系,因为所有的数据都被加上了时间戳,但它并不适合需要严格顺序的情况 。
2.9 无数据重复删除功能
NSQ对于超时系统,它使用了心跳检测机制去测试消费者是否存活还是死亡 。很多原因会导致我们的consumer无法完成心跳检测,所以在consumer中必须有一个单独的步骤确保幂等性 。
3. 实践安装过程
本文将nsq集群具体的安装过程略去,大家可以自行参考 , 比较简单 。这部分介绍下笔者实验的拓扑,以及nsqadmin的相关信息 。
3.1 拓扑结构
topology
实验采用3台NSQD服务 , 2台LOOKUPD服务 。
采用官方推荐的拓扑,消息发布的服务和NSQD在一台主机 。一共5台机器 。
NSQ基本没有配置文件,配置通过命令行指定参数 。
主要命令如下:
LOOKUPD命令
NSQD命令
工具类,消费后存储到本地文件 。
发布一条消息
3.2 nsqadmin
对Streams的详细信息进行查看 , 包括NSQD节点,具体的channel,队列中的消息数,连接数等信息 。
nsqadmin
channel
列出所有的NSQD节点:
nodes
消息的统计:
msgs
lookup主机的列表:
推荐阅读
- 游戏角色扮演英文缩写,游戏人物角色扮演英文
- Js上的下划线方法,jquery下划线
- 寻甸武装部公众号关注,寻甸武装部部长照片
- 解码区块链全集,解密区块链
- c语言的入门函数 c语言函数使用方法
- 怎么在电脑上插耳机,电脑怎么插耳机子
- sqlserver回滚操作,sqlserver 回滚数据
- 电脑为什么要u盘才能启动电脑,为什么电脑非要用启动盘才可以启动
- php一个月前的数据 php前一天