#model.compile里的参数loss就是损失函数(目标函数)
sgd = SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=["accuracy"])
#调用fit方法,就是一个训练过程. 训练的epoch数设为10,batch_size为100.
#数据经过随机打乱shuffle=True 。verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要 。show_accuracy=True,训练时每一个epoch都输出accuracy 。
#validation_split=0.2,将20%的数据作为验证集 。
model.fit(data, label, batch_size=100, nb_epoch=10,shuffle=True,verbose=1,validation_split=0.2)
"""
#使用data augmentation的方法
#一些参数和调用的方法,请看文档
datagen = ImageDataGenerator(
featurewise_center=True, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=True, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.2, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images
vertical_flip=False) # randomly flip images
# compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied)
datagen.fit(data)
for e in range(nb_epoch):
print('-'*40)
print('Epoch', e)
print('-'*40)
print("Training...")
# batch train with realtime data augmentation
progbar = generic_utils.Progbar(data.shape[0])
for X_batch, Y_batch in datagen.flow(data, label):
loss,accuracy = model.train(X_batch, Y_batch,accuracy=True)
progbar.add(X_batch.shape[0], values=[("train loss", loss),("accuracy:", accuracy)] )
"""
【python中卷积函数 python 卷积】关于python中卷积函数和python 卷积的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站 。
推荐阅读
- 怎么查看电脑外部连接,电脑如何查看外接设备
- 迅雷看视频需要加载什么,迅雷视频字幕怎么加载
- 吃药网红直播,网红直播被观众催喝药 次日离世
- linux过滤的命令 linux过滤错误信息
- 角色扮演游戏教案看病,角色扮演医生游戏教案
- ios系统王者荣耀怎么转移到安卓,如何把ios王者荣耀转移到安卓
- java代码动态加密 javajar包加密
- 做新媒体如何赚钱快点,新媒体赚钱的方式
- pc像素经营游戏,像素游戏经营类游戏