包含python的高斯函数的词条( 二 )


2) math.radians(x)#表示角度值转弧度值
3) math.hypot(x,y)#表示(x,y)坐标到原点(0,0)的距离
4) math.sin(x)#表示x的正弦函数值
5) math.cos(x)#表示x的余弦函数值
6) math.tan(x)#表示x的正切函数值
7)math.asin(x)#表示x的反正弦函数值
8) math.acos(x)#表示x的反余弦函数值
9) math.atan(x)#表示x的反正切函数值
10) math.atan2(y,x)#表示y/x的反正切函数值
11) math.sinh(x)#表示x的双曲正弦函数值
12) math.cosh(x)#表示x的双曲余弦函数值
13) math.tanh(x)#表示x的双曲正切函数值
14) math.asinh(x)#表示x的反双曲正弦函数值
15) math.acosh(x)#表示x的反双曲余弦函数值
16) math.atanh(x)#表示x的反双曲正切函数值
1)math.erf(x)#高斯误差函数
2) math.erfc(x)#余补高斯误差函数
3) math.gamma(x)#伽马函数(欧拉第二积分函数)
4) math.lgamma(x)#伽马函数的自然对数
怎么用python表示出二维高斯分布函数,mu表示均值 , sigma表示协方差矩阵,x表示数据点clear
close all
%%%%%%%%%%%%%%%%%%%%%%%%%生成实验数据集
rand('state',0)
sigma_matrix1=eye(2);
sigma_matrix2=50*eye(2);
u1=[0,0];
u2=[30,30];
m1=100;
m2=300;%样本数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm1数据集
Y1=multivrandn(u1,m1,sigma_matrix1);
Y2=multivrandn(u2,m2,sigma_matrix2);
scatter(Y1(:,1),Y1(:,2),'bo')
hold on
scatter(Y2(:,1),Y2(:,2),'r*')
title('SM1数据集')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%sm2数据集
u11=[0,0];
u22=[5,5];
u33=[10,10];
u44=[15,15];
m=600;
sigma_matrix3=2*eye(2);
Y11=multivrandn(u11,m,sigma_matrix3);
Y22=multivrandn(u22,m,sigma_matrix3);
Y33=multivrandn(u33,m,sigma_matrix3);
Y44=multivrandn(u44,m,sigma_matrix3);
figure(2)
scatter(Y11(:,1),Y11(:,2),'bo')
hold on
scatter(Y22(:,1),Y22(:,2),'r*')
scatter(Y33(:,1),Y33(:,2),'go')
scatter(Y44(:,1),Y44(:,2),'c*')
title('SM2数据集')
end
function Y = multivrandn(u,m,sigma_matrix)
%%生成指定均值和协方差矩阵的高斯数据
n=length(u);
c = chol(sigma_matrix);
X=randn(m,n);
Y=X*c+ones(m,1)*u;
end
【包含python的高斯函数的词条】python的高斯函数的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于、python的高斯函数的信息别忘了在本站进行查找喔 。

推荐阅读