go语言并发存取款 go语言为什么可以处理高并发( 四 )


注意到pool中的对象是无差异性的,加锁或者分段加锁都不是较好的做法 。go的做法是为每一个绑定协程的P都分配一个子池 。每个子池又分为私有池和共享列表 。共享列表是分别存放在各个P之上的共享区域,而不是各个P共享的一块内存 。协程拿自己P里的子池对象不需要加锁,拿共享列表中的就需要加锁了 。
Get对象过程:
Put过程:
如何解决Get最坏情况遍历所有P才获取得对象呢:
方法1止前sync.pool并没有这样的设置 。方法2由于goroutine被分配到哪个P由调度器调度不可控,无法确保其平衡 。
由于不可控的GC导致生命周期过短 , 且池大小不可控,因而不适合作连接池 。仅适用于增加对象重用机率,减少GC负担 。2
执行结果:
单线程情况下,遍历其它无元素的P,长时间加锁性能低下 。启用协程改善 。
结果:
测试场景在goroutines远大于GOMAXPROCS情况下,与非池化性能差异巨大 。
测试结果
可以看到同样使用*sync.pool,较大池大小的命中率较高,性能远高于空池 。
结论:pool在一定的使用条件下提高并发性能,条件1是协程数远大于GOMAXPROCS,条件2是池中对象远大于GOMAXPROCS 。归结成一个原因就是使对象在各个P中均匀分布 。
池pool和缓存cache的区别 。池的意思是,池内对象是可以互换的,不关心具体值 , 甚至不需要区分是新建的还是从池中拿出的 。缓存指的是KV映射,缓存里的值互不相同,清除机制更为复杂 。缓存清除算法如LRU、LIRS缓存算法 。
池空间回收的几种方式 。一些是GC前回收,一些是基于时钟或弱引用回收 。最终确定在GC时回收Pool内对象,即不回避GC 。用java的GC解释弱引用 。GC的四种引用:强引用、弱引用、软引用、虚引用 。虚引用即没有引用,弱引用GC但有空间则保留,软引用GC即清除 。ThreadLocal的值为弱引用的例子 。
regexp 包为了保证并发时使用同一个正则,而维护了一组状态机 。
fmt包做字串拼接,从sync.pool拿[]byte对象 。避免频繁构建再GC效率高很多 。
Go CSP并发模型Go的CSP并发模型
Go实现了两种并发形式 。第一种是大家普遍认知的:多线程共享内存 。其实就是Java或者C++等语言中的多线程开发 。另外一种是Go语言特有的,也是Go语言推荐的:CSP(communicating sequential processes)并发模型 。
CSP 是 Communicating Sequential Process 的简称,中文可以叫做通信顺序进程,是一种并发编程模型 , 由 Tony Hoare 于 1977 年提出 。简单来说,CSP 模型由并发执行的实体(线程或者进程)所组成,实体之间通过发送消息进行通信,这里发送消息时使用的就是通道,或者叫 channel 。CSP 模型的关键是关注 channel,而不关注发送消息的实体 。Go 语言实现了 CSP 部分理论。
“不要以共享内存的方式来通信,相反,要通过通信来共享内存 。”
Go的CSP并发模型,是通过goroutine和channel来实现的 。
goroutine 是Go语言中并发的执行单位 。其实就是协程 。
channel是Go语言中各个并发结构体(goroutine)之前的通信机制 。通俗的讲,就是各个goroutine之间通信的”管道“,有点类似于Linux中的管道 。
Channel
Goroutine
Go语言——goroutine并发模型参考:
Goroutine并发调度模型深度解析手撸一个协程池
Golang 的 goroutine 是如何实现的?
Golang - 调度剖析【第二部分】
OS线程初始栈为2MB 。Go语言中,每个goroutine采用动态扩容方式,初始2KB , 按需增长,最大1G 。此外GC会收缩栈空间 。
BTW,增长扩容都是有代价的,需要copy数据到新的stack,所以初始2KB可能有些性能问题 。

推荐阅读