go语言字节数组转字符串 golang字节数组( 二 )


}
3.使用正则表达式判断
String str = "";
boolean isNum = str.matches("[0-9]+");
//+表示1个或多个(如"3"或"225") , *表示0个或多个([0-9]*)(如""或"1"或"22"),?表示0个或1个([0-9]?)(如""或"7")
4.使用Pattern类和Matcher
String str = "123";
Pattern pattern = Pattern.compile("[0-9]+");
Matcher matcher = pattern.matcher((CharSequence) str);
boolean result = matcher.matches();
if (result) {
System.out.println("true");
} else {
System.out.println("false");
}
go语言string之Buffer与Builder操作字符串离不开字符串的拼接go语言字节数组转字符串,但是Go中string是只读类型 , 大量字符串的拼接会造成性能问题 。
拼接字符串,无外乎四种方式,采用“+”,“fmt.Sprintf()”,"bytes.Buffer","strings.Builder"
上面go语言字节数组转字符串我们创建10万字符串拼接的测试,可以发现"bytes.Buffer","strings.Builder"的性能最好,约是“+”的1000倍级别 。
这是由于string是不可修改的 , 所以在使用“+”进行拼接字符串,每次都会产生申请空间,拼接 , 复制等操作,数据量大的情况下非常消耗资源和性能 。而采用Buffer等方式 , 都是预先计算拼接字符串数组的总长度(如果可以知道长度),申请空间,底层是slice数组,可以以append的形式向后进行追加 。最后在转换为字符串 。这申请go语言字节数组转字符串了不断申请空间的操作,也减少了空间的使用和拷贝的次数,自然性能也高不少 。
bytes.buffer是一个缓冲byte类型的缓冲器存放着都是byte
是一个变长的 buffer,具有 Read 和Write 方法 。Buffer 的 零值 是一个 空的 buffer , 但是可以使用,底层就是一个 []byte,字节切片 。
向Buffer中写数据,可以看出Buffer中有个Grow函数用于对切片进行扩容 。
从Buffer中读取数据
strings.Builder的方法和bytes.Buffer的方法的命名几乎一致 。
但实现并不一致,Builder的Write方法直接将字符拼接slice数组后 。
其没有提供read方法,但提供了strings.Reader方式
Reader 结构:
Buffer:
Builder:
可以看出Buffer和Builder底层都是采用[]byte数组进行装载数据 。
先来说说Buffer:
创建好Buffer是一个empty的,off 用于指向读写的尾部 。
在写的时候,先判断当前写入字符串长度是否大于Buffer的容量,如果大于就调用grow进行扩容,扩容申请的长度为当前写入字符串的长度 。如果当前写入字符串长度小于最小字节长度64,直接创建64长度的[]byte数组 。如果申请的长度小于二分之一总容量减去当前字符总长度,说明存在很大一部分被使用但已读 , 可以将未读的数据滑动到数组头 。如果容量不足,扩展2*c + n。
其String()方法就是将字节数组强转为string
Builder是如何实现的 。
Builder采用append的方式向字节数组后添加字符串 。
从上面可以看出,[]byte的内存大小也是以倍数进行申请的,初始大小为 0,第一次为大于当前申请的最大 2 的指数,不够进行翻倍.
可以看出如果旧容量小于1024进行翻倍,否则扩展四分之一 。(2048 byte 后,申请策略的调整) 。
其次String()方法与Buffer的string方法也有明显区别 。Buffer的string是一种强转 , 我们知道在强转的时候是需要进行申请空间 , 并拷贝的 。而Builder只是指针的转换 。
这里我们解析一下 *(*string)(unsafe.Pointer(b.buf)) 这个语句的意思 。
先来了解下unsafe.Pointer 的用法 。
也就是说,unsafe.Pointer 可以转换为任意类型,那么意味着,通过unsafe.Pointer媒介,程序绕过类型系统,进行地址转换而不是拷贝 。

推荐阅读