这些是一类问题,因为它们都需要基于全部数据集合进行计算 。多数的代理都不会自动处理合并工作 。解决方案:与解决跨节点join问题的类似,分别在各个节点上得到结果后在应用程序端进行合并 。和join不同的是每个结点的查询可以并行执行 , 因此很多时候它的速度要比单一大表快很多 。但如果结果集很大,对应用程序内存的消耗是一个问题 。
数据迁移,容量规划,扩容等问题
来自淘宝综合业务平台团队,它利用对2的倍数取余具有向前兼容的特性(如对4取余得1的数对2取余也是1)来分配数据,避免了行级别的数据迁移,但是依然需要进行表级别的迁移,同时对扩容规模和分表数量都有限制 。总得来说,这些方案都不是十分的理想,多多少少都存在一些缺点,这也从一个侧面反映出了Sharding扩容的难度 。
ID问题
一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键生成机制 。一方面 , 某个分区数据库自生成的ID无法保证在全局上是唯一的;另一方面 , 应用程序在插入数据之前需要先获得ID,以便进行SQL路由.
一些常见的主键生成策略
UUID
使用UUID作主键是最简单的方案,但是缺点也是非常明显的 。由于UUID非常的长,除占用大量存储空间外 , 最主要的问题是在索引上,在建立索引和基于索引进行查询时都存在性能问题 。
Twitter的分布式自增ID算法Snowflake
在分布式系统中,需要生成全局UID的场合还是比较多的,twitter的snowflake解决了这种需求 , 实现也还是很简单的,除去配置信息,核心代码就是毫秒级时间41位 机器ID 10位 毫秒内序列12位 。
跨分片的排序分页
一般来讲,分页时需要按照指定字段进行排序 。当排序字段就是分片字段的时候,我们通过分片规则可以比较容易定位到指定的分片 , 而当排序字段非分片字段的时候,情况就会变得比较复杂了 。为了最终结果的准确性,我们需要在不同的分片节点中将数据进行排序并返回,并将不同分片返回的结果集进行汇总和再次排序 , 最后再返回给用户 。
mysql数据量大怎么办的介绍就聊到这里吧,感谢你花时间阅读本站内容 , 更多关于mysql数据太大、mysql数据量大怎么办的信息别忘了在本站进行查找喔 。
推荐阅读
- 大型vr虚拟体感游戏机,大型vr虚拟体感游戏机有哪些
- 联想t510怎么加显卡,联想笔记本t510主板能加显卡
- sqlserver停数据库,sql数据库停止服务
- 如何进行软文营销,软文营销攻略
- java入职写代码多不多 java入职写代码多不多怎么看
- erp生产系统界面,ERP系统界面
- 电脑xxs是什么,电脑上srs是什么意思
- 显卡怎么用笔记本连接电脑,显卡怎么用笔记本连接电脑显示器
- php统计查询出的条数据 php统计数据库有几条数据