来源:刘建平Pinard
http://www.cnblogs.com/pinard/p/6016029.html
对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了。
1. 获取数据,定义问题
没有数据,当然没法研究机器学习啦。:) 这里我们用UCI大学公开的机器学习数据来跑线性回归。
数据的介绍在这: http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
数据的下载地址在这: http://archive.ics.uci.edu/ml/machine-learning-databases/00294/
里面是一个循环发电场的数据,共有9568个样本数据,每个数据有5列,分别是:AT(温度), V(压力), AP(湿度), RH(压强), PE(输出电力)。我们不用纠结于每项具体的意思。
我们的问题是得到一个线性的关系,对应PE是样本输出,而AT/V/AP/RH这4个是样本特征, 机器学习的目的就是得到一个线性回归模型,即:
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
PE=θ0+θ1?AT+θ2?V+θ3?AP+θ4?RH
而需要学习的,就是
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
θ0,θ1,θ2,θ3,θ4这5个参数。
2. 整理数据 下载后的数据可以发现是一个压缩文件,解压后可以看到里面有一个xlsx文件,我们先用excel把它打开,接着“另存为“”csv格式,保存下来,后面我们就用这个csv来运行线性回归。
打开这个csv可以发现数据已经整理好,没有非法数据,因此不需要做预处理。但是这些数据并没有归一化,也就是转化为均值0,方差1的格式。也不用我们搞,后面scikit-learn在线性回归时会先帮我们把归一化搞定。
好了,有了这个csv格式的数据,我们就可以大干一场了。
3. 用pandas来读取数据 我们先打开ipython notebook,新建一个notebook。当然也可以直接在python的交互式命令行里面输入,不过还是推荐用notebook。下面的例子和输出我都是在notebook里面跑的。
先把要导入的库声明了:
import matplotlib.pyplot as plt %matplotlib inline import numpy as np import pandas as pd from sklearn import datasets, linear_model
接着我们就可以用pandas读取数据了:
# read_csv里面的参数是csv在你电脑上的路径,此处csv文件放在notebook运行目录下面的CCPP目录里 data = https://www.it610.com/article/pd.read_csv('.\CCPP\ccpp.csv')
测试下读取数据是否成功:
#读取前五行数据,如果是最后五行,用data.tail() data.head()
运行结果应该如下,看到下面的数据,说明pandas读取数据成功:
AT | V | AP | RH | PE | |
---|---|---|---|---|---|
0 | 8.34 | 40.77 | 1010.84 | 90.01 | 480.48 |
1 | 23.64 | 58.49 | 1011.40 | 74.20 | 445.75 |
2 | 29.74 | 56.90 | 1007.15 | 41.91 | 438.76 |
3 | 19.07 | 49.69 | 1007.22 | 76.79 | 453.09 |
4 | 11.80 | 40.66 | 1017.13 | 97.20 | 464.43 |
4. 准备运行算法的数据 我们看看数据的维度:
data.shape
结果是(9568, 5)。说明我们有9568个样本,每个样本有5列。
现在我们开始准备样本特征X,我们用AT, V,AP和RH这4个列作为样本特征。
X = data[['AT', 'V', 'AP', 'RH']] X.head()
可以看到X的前五条输出如下:
AT | V | AP | RH | |
---|---|---|---|---|
0 | 8.34 | 40.77 | 1010.84 | 90.01 |
1 | 23.64 | 58.49 | 1011.40 | 74.20 |
2 | 29.74 | 56.90 | 1007.15 | 41.91 |
3 | 19.07 | 49.69 | 1007.22 | 76.79 |
4 | 11.80 | 40.66 | 1017.13 | 97.20 |
接着我们准备样本输出y, 我们用PE作为样本输出。
y = data[['PE']] y.head()
可以看到y的前五条输出如下:
PE | |
---|---|
0 | 480.48 |
1 | 445.75 |
2 | 438.76 |
3 | 453.09 |
4 | 464.43 |
from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
查看下训练集和测试集的维度:
print X_train.shape print y_train.shape print X_test.shape print y_test.shape
结果如下:
(7176, 4) (7176, 1) (2392, 4) (2392, 1)
可以看到75%的样本数据被作为训练集,25%的样本被作为测试集。
6. 运行scikit-learn的线性模型
终于到了临门一脚了,我们可以用scikit-learn的线性模型来拟合我们的问题了。scikit-learn的线性回归算法使用的是最小二乘法来实现的。代码如下:
from sklearn.linear_model import LinearRegression linreg = LinearRegression() linreg.fit(X_train, y_train)
拟合完毕后,我们看看我们的需要的模型系数结果:
print linreg.intercept_ print linreg.coef_
输出如下:
[ 447.06297099] [[-1.97376045 -0.232290860.0693515-0.15806957]]
这样我们就得到了在步骤1里面需要求得的5个值。也就是说PE和其他4个变量的关系如下:
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
文章图片
PE=447.06297099?1.97376045?AT?0.23229086?V+0.0693515?AP?0.15806957?RH
7. 模型评价 我们需要评估我们的模型的好坏程度,对于线性回归来说,我们一般用均方差(Mean Squared Error, MSE)或者均方根差(Root Mean Squared Error, RMSE)在测试集上的表现来评价模型的好坏。
我们看看我们的模型的MSE和RMSE,代码如下:
文章图片
#模型拟合测试集 y_pred = linreg.predict(X_test) from sklearn import metrics # 用scikit-learn计算MSE print "MSE:",metrics.mean_squared_error(y_test, y_pred) # 用scikit-learn计算RMSE print "RMSE:",np.sqrt(metrics.mean_squared_error(y_test, y_pred))
文章图片
输出如下:
MSE: 20.0804012021 RMSE: 4.48111606657
得到了MSE或者RMSE,如果我们用其他方法得到了不同的系数,需要选择模型时,就用MSE小的时候对应的参数。
比如这次我们用AT, V,AP这3个列作为样本特征。不要RH, 输出仍然是PE。代码如下:
X = data[['AT', 'V', 'AP']] y = data[['PE']] X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) from sklearn.linear_model import LinearRegression linreg = LinearRegression() linreg.fit(X_train, y_train) #模型拟合测试集 y_pred = linreg.predict(X_test) from sklearn import metrics # 用scikit-learn计算MSE print "MSE:",metrics.mean_squared_error(y_test, y_pred) # 用scikit-learn计算RMSE print "RMSE:",np.sqrt(metrics.mean_squared_error(y_test, y_pred))
文章图片
输出如下:
MSE: 23.2089074701 RMSE: 4.81756239919
可以看出,去掉RH后,模型拟合的没有加上RH的好,MSE变大了。
8. 交叉验证
我们可以通过交叉验证来持续优化模型,代码如下,我们采用10折交叉验证,即cross_val_predict中的cv参数为10:
文章图片
X = data[['AT', 'V', 'AP', 'RH']] y = data[['PE']] from sklearn.model_selection import cross_val_predict predicted = cross_val_predict(linreg, X, y, cv=10) # 用scikit-learn计算MSE print "MSE:",metrics.mean_squared_error(y, predicted) # 用scikit-learn计算RMSE print "RMSE:",np.sqrt(metrics.mean_squared_error(y, predicted))
文章图片
输出如下:
MSE: 20.7955974619 RMSE: 4.56021901469
可以看出,采用交叉验证模型的MSE比第6节的大,主要原因是我们这里是对所有折的样本做测试集对应的预测值的MSE,而第6节仅仅对25%的测试集做了MSE。两者的先决条件并不同。
9. 画图观察结果 这里画图真实值和预测值的变化关系,离中间的直线y=x直接越近的点代表预测损失越低。代码如下:
文章图片
fig, ax = plt.subplots() ax.scatter(y, predicted) ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4) ax.set_xlabel('Measured') ax.set_ylabel('Predicted') plt.show()
文章图片
输出的图像如下:
文章图片
以上就是用scikit-learn和pandas学习线性回归的过程,希望可以对初学者有所帮助。
【python|用scikit-learn和pandas学习线性回归】
推荐阅读
- python|Scrapy框架不会(来让我带你了解了解)
- python|基于python的机器学习库
- 【数据处理】python连接mysql数据库
- 测试TCP客服端与服务端连接(python)
- 小白都看得懂的监督学习与无监督学习
- java|论如何逼疯一个前端开发者 | 每日趣闻
- 网络|iOS 15.5 被曝“偷跑”流量(苹果(建议恢复出厂设置))
- pandas基础(part4)--排序/分组/合并
- 基于机器学习和TFIDF的情感分类算法,详解自然语言处理