huntian oy
推式子
【HDU 6706 huntian oy (欧拉函数 + 杜教筛)】 ∑ i = 1 n ∑ j = 1 i g c d ( i a ? j a , i b ? j b ) ( g c d ( i , j ) = = 1 ) = ∑ i = 1 n ∑ j = 1 i ( i ? j ) ( g c d ( i , j ) = = 1 ) = ∑ i = 1 n i ∑ j = 1 i ( g c d ( i , j ) = = 1 ) ? ∑ i = 1 n ∑ j = 1 i j ( g c d ( i , j ) = = 1 ) = ∑ i = 1 n i ? ( i ) ? ∑ i = 1 n i ? ( i ) + ( i = = 1 ) 2 = ∑ i = 1 n i ? ( i ) ? ( i = = 1 ) 2 然 后 套 路 地 变 成 求 S ( n ) = ∑ i = 1 n i ? ( i ) g ( n ) = n ? ( n ) 这 里 直 接 套 用 杜 教 筛 化 简 得 到 g ( 1 ) S ( n ) = ∑ i = 1 n ( f ? g ) ( i ) ? ∑ i = 2 f ( i ) S ( n i ) ( f ? g ) ( i ) = ∑ d ∣ n f ( d ) ? g ( n d ) = ∑ d ∣ n f ( d ) ? n d ? ( n d ) 另 f ( d ) = d , 则 有 S ( n ) = ∑ i = 1 n i 2 ? ∑ i = 2 i S ( n i ) 然 后 直 接 套 杜 教 筛 即 可 。 \sum_{i = 1} ^{n} \sum_{j = 1} ^{i}gcd(i ^ a - j ^ a, i ^ b - j ^ b) (gcd(i, j) == 1)\\ = \sum_{i = 1} ^{n} \sum_{j = 1} ^{i} (i - j)(gcd(i, j) == 1) \\ = \sum_{i = 1} ^{n} i\sum_{j = 1} ^{i} (gcd(i, j) == 1) - \sum_{i = 1} ^{n} \sum_{j = 1} ^{i} j (gcd(i, j) == 1)\\ = \sum_{i = 1} ^{n} i \phi(i) - \sum_{i = 1} ^{n} \frac{i \phi(i) + (i == 1)}{2}\\ = \sum_{i = 1} ^{n} \frac{i \phi(i) - (i == 1)}{2}\\ 然后套路地变成求S(n) = \sum_{i = 1} ^{n} i \phi(i)\\ \\g(n) = n \phi(n)\\ 这里直接套用杜教筛化简得到g(1)S(n) = \sum_{i = 1} ^{n} (f*g)(i) - \sum_{i = 2} f(i)S(\frac{n}{i})\\ (f * g)(i) = \sum_{d \mid n} f(d) *g(\frac{n}{d}) = \sum_{d \mid n} f(d) * \frac{n}{d} \phi(\frac{n}{d})\\ 另f(d) =d,则有S(n) = \sum_{i = 1} ^{n} i ^ 2 - \sum_{i = 2} i S(\frac{n}{i})\\ 然后直接套杜教筛即可。 i=1∑n?j=1∑i?gcd(ia?ja,ib?jb)(gcd(i,j)==1)=i=1∑n?j=1∑i?(i?j)(gcd(i,j)==1)=i=1∑n?ij=1∑i?(gcd(i,j)==1)?i=1∑n?j=1∑i?j(gcd(i,j)==1)=i=1∑n?i?(i)?i=1∑n?2i?(i)+(i==1)?=i=1∑n?2i?(i)?(i==1)?然后套路地变成求S(n)=i=1∑n?i?(i)g(n)=n?(n)这里直接套用杜教筛化简得到g(1)S(n)=i=1∑n?(f?g)(i)?i=2∑?f(i)S(in?)(f?g)(i)=d∣n∑?f(d)?g(dn?)=d∣n∑?f(d)?dn??(dn?)另f(d)=d,则有S(n)=i=1∑n?i2?i=2∑?iS(in?)然后直接套杜教筛即可。
代码
/*
Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include #define mp make_pair
#define pb push_back
#define endl '\n'
#define mid (l + r >> 1)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define ls rt << 1
#define rs rt << 1 | 1using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair pii;
const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;
inline ll read() {
ll f = 1, x = 0;
char c = getchar();
while(c < '0' || c > '9') {
if(c == '-')f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f * x;
}const int N = 1e6 + 10, mod = 1e9 + 7, inv2 = 500000004, inv6 = 166666668;
int prime[N], cnt;
ll phi[N];
bool st[N];
ll quick_pow(ll a, ll n) {
ll ans = 1;
while(n) {
if(n & 1) ans = ans * a % mod;
n >>= 1;
a = a * a % mod;
}
return ans;
}void init() {
phi[1] = 1;
for(int i = 2;
i < N;
i++) {
if(!st[i]) {
prime[cnt++] = i;
phi[i] = i - 1;
}
for(int j = 0;
j < cnt && i * prime[j] < N;
j++) {
st[i * prime[j]] = 1;
if(i % prime[j] == 0) {
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
}
for(int i = 1;
i < N;
i++) {
phi[i] = (1ll * phi[i] * i + phi[i - 1]) % mod;
}
}ll calc(int n) {
return 1ll * n * (n + 1) % mod * (2 * n + 1) % mod * inv6 % mod;
}unordered_map ans_s;
ll S(int n) {
if(n < N) return phi[n];
if(ans_s.count(n)) return ans_s[n];
ll ans = calc(n);
for(int l = 2, r;
l <= n;
l = r + 1) {
r = n / (n / l);
ans = (ans - 1ll * (r + l) * (r - l + 1) / 2 % mod * S(n / l) % mod + mod) % mod;
}
return ans_s[n] = ans;
}int main() {
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
init();
int T = read();
while(T--) {
int n = read(), a = read(), b = read();
printf("%lld\n", (S(n) - 1 + mod) % mod * inv2 % mod);
}
return 0;
}
推荐阅读
- 杜教筛|hdu 6706 huntian oy 杜教筛
- 数论|HDU 6706 huntian oy(杜教筛)
- 刷题小结|51nod 1227 平均最小公倍数
- 杜教筛|[学习笔记] 杜教筛 (51nod 1244+1227 +1237 +1238+1239) - 数论
- [51Nod 1238] 最小公倍数之和 (恶心杜教筛)
- 莫比乌斯反演|【51NOD 1227】平均最小公倍数
- #|hdu6706,2019中国大学生程序设计竞赛(CCPC) - 网络选拔赛 huntian oy
- 数论|51nod1227 平均最小公倍数(杜教筛)
- 莫比乌斯反演|51nod 1227 平均最小公倍数 莫比乌斯反演+杜教筛
- c++|51nod 1227 平均最小公倍数 杜教筛