D. Power Tree time limit per test
3.5 seconds memory limit per test
256 megabytes input
standard input output
standard output Genos and Saitama went shopping for Christmas trees. However, a different type of tree caught their attention, the exalted Power Tree.
A Power Tree starts out as a single root vertex indexed 1. A Power Tree grows through a magical phenomenon known as an update. In an update, a single vertex is added to the tree as a child of some other vertex.
Every vertex in the tree (the root and all the added vertices) has some value vi associated with it. The power of a vertex is defined as the strength of the multiset composed of the value associated with this vertex (vi) and the powers of its direct children. The strength of a multiset is defined as the sum of all elements in the multiset multiplied by the number of elements in it. Or in other words for somemultiset S:
文章图片
【Codeforces Round #336 (Div. 1) D. Power Tree】 Saitama knows the updates that will be performed on the tree, so he decided to test Genos by asking him queries about the tree during its growth cycle.
An update is of the form 1 p v, and adds a new vertex with value v as a child of vertex p.
A query is of the form 2 u, and asks for the power of vertex u.
Please help Genos respond to these queries modulo 109?+?7.
Input The first line of the input contains two space separated integers v1 and q (1?≤?v1?109, 1?≤?q?≤?200?000) — the value of vertex 1 and the total number of updates and queries respectively.
The next q lines contain the updates and queries. Each of them has one of the following forms:
- 1 pi vi, if these line describes an update. The index of the added vertex is equal to the smallest positive integer not yet used as an index in the tree. It is guaranteed that pi is some already existing vertex and 1?≤?vi?109.
- 2 ui, if these line describes a query. It is guaranteed ui will exist in the tree.
Output For each query, print out the power of the given vertex modulo 109?+?7.
Sample test(s) input
2 5 1 1 3 1 2 5 1 3 7 1 4 11 2 1
output
344
input
5 5 1 1 4 1 2 3 2 2 1 2 7 2 1
output
14 94
Note For the first sample case, after all the updates the graph will have vertices labelled in the following manner: 1 — 2 — 3 — 4 — 5
These vertices will have corresponding values: 2 — 3 — 5 — 7 — 11
And corresponding powers: 344 — 170 — 82 — 36 — 11
#include
#include
#include
#include
using namespace std;
const int maxn = 2E5 + 20;
typedef long long LL;
const LL mo = 1000000007;
struct Q{
int opt;
int qx,qy;
}q[maxn];
int n,m,i,j,In[maxn],Out[maxn],d_t,cur = 1,si[maxn],fa[maxn];
LL c[maxn*20],va[maxn],Mark[maxn*20 + 10];
vector v[maxn];
void dfs(int k)
{
In[k] = ++d_t;
for (int l = 0;
l < v[k].size();
l++) {
int to = v[k][l];
dfs(to);
}
Out[k] = d_t;
}void push_down(int o)
{
if (Mark[o] == 1) return;
Mark[2*o] = Mark[2*o]*Mark[o]%mo;
Mark[2*o+1] = Mark[o]*Mark[2*o+1]%mo;
c[2*o] = c[2*o]*Mark[o]%mo;
c[2*o+1] = c[2*o+1]*Mark[o]%mo;
Mark[o] = 1;
}LL f_c(int o,int l,int r,int ql,int qr)
{
if (ql <= l && r <= qr) return c[o];
push_down(o);
int mid = (l+r) >> 1;
LL ret = 0;
if (ql <= mid) ret = (ret+f_c(2*o,l,mid,ql,qr)) % mo;
if (qr > mid) ret = (ret+f_c(2*o+1,mid+1,r,ql,qr)) % mo;
return ret;
}void Modify(int o,int l,int r,int ql,int qr,LL M)
{
if (ql <= l && r <= qr) {
c[o] = c[o]*M%mo;
Mark[o] = Mark[o]*M%mo;
return;
}
push_down(o);
int mid = (l+r) >> 1;
if (ql <= mid) Modify(2*o,l,mid,ql,qr,M);
if (qr > mid) Modify(2*o+1,mid+1,r,ql,qr,M);
c[o] = (c[2*o] + c[2*o+1]) % mo;
}void Add(int o,int l,int r,int pos,LL A)
{
c[o] = (c[o]+A)%mo;
if (l == r) return;
push_down(o);
int mid = (l+r) >> 1;
if (pos <= mid) Add(2*o,l,mid,pos,A);
else Add(2*o+1,mid+1,r,pos,A);
}LL ksm(LL x,LL y)
{
LL ret = 1;
for (;
y;
y >>= 1) {
if (y&1) ret = ret*x%mo;
x = x*x%mo;
}
return ret%mo;
}int main()
{
#ifdef YZY
freopen("yzy.txt","r",stdin);
#endif
cin >> va[1] >> m;
for (i = 1;
i <= maxn*20;
i++) Mark[i] = 1;
for (i = 1;
i <= m;
i++) {
scanf("%d",&q[i].opt);
if (q[i].opt == 1) {
scanf("%d %d",&q[i].qx,&va[++cur]);
q[i].qy = cur;
v[q[i].qx].push_back(q[i].qy);
fa[q[i].qy] = q[i].qx;
}
else scanf("%d",&q[i].qx);
}
n = cur;
dfs(1);
si[1] = 1;
Add(1,1,cur,In[1],va[1]);
for (i = 1;
i <= m;
i++) {
if (q[i].opt == 1) {
si[q[i].qy] = 1;
LL Si = f_c(1,1,n,In[q[i].qx],In[q[i].qx]);
Si = Si*ksm(va[q[i].qx],mo-2)%mo;
Add(1,1,n,In[q[i].qy],va[q[i].qy]*Si%mo);
LL Modi = ksm(si[q[i].qx],mo-2)*(++si[q[i].qx])%mo;
Modify(1,1,n,In[q[i].qx],Out[q[i].qx],Modi);
}
else {
LL a = f_c(1,1,n,In[q[i].qx],Out[q[i].qx]);
LL b;
if (q[i].qx == 1) b = 1;
else {
int FA = fa[q[i].qx];
b = f_c(1,1,n,In[FA],In[FA]);
b = ksm(va[FA],mo-2)%mo*b%mo;
b = ksm(b,mo-2);
}
printf("%I64d\n",a*b%mo);
}
}
return 0;
}
推荐阅读
- 遇见蓝桥遇见你|小唐开始刷蓝桥(一)2020年第十一届C/C++ B组第二场蓝桥杯省赛真题
- DFS|使用DFS(深搜)遍历所有的序列所有的子组合(子序列)(排列组合中的组合)
- Pavel loves grid mazes(CodeForce 377A)
- DFS|CodeForces - 275B (广搜)
- 搜索|Wannafly模拟赛3-B 贝伦卡斯泰露(DFS)
- CodeForces 377A
- DFS|CodeForces - 1099D(树上贪心+DFS)
- BFS|Solve The Maze(codeforces)
- online|Codeforces #245 (Div. 2)C. Xor-tree(DFS&&贪心