【数学|【SRM 565 UnknownTree】计数 分类讨论】一个有N + 3个点的树,告诉你123号点到其他点的距离,求合法的边权为正整数的树个数。
#include
#include
#include
#include
#include
#include
#define Rep(i, x, y) for (int i = x;
i <= y;
i ++)
#define Dwn(i, x, y) for (int i = x;
i >= y;
i --)
#define RepE(i, x) for(int i = pos[x];
i;
i = g[i].nex)
using namespace std;
typedef long long LL;
typedef double DB;
const int mod = 1000000009, N = 60;
LL ans;
int n, a[N], b[N], c[N], par[N], p0[N];
class UnknownTree {
public:
void Calc(int *a, int *b, int *c, int Dab, int Dac) {
if (!Dab || !Dac) return ;
a[n] = b[n + 1] = c[n + 2] = 0;
a[n + 1] = b[n] = Dab, a[n + 2] = c[n] = Dac, b[n + 2] = c[n + 1] = Dab + Dac;
LL sum = 1;
memset(par, 0, sizeof(par));
Rep(j, 0, n - 1) {
Rep(k, 0, n + 2)
if (a[j] > a[k] && a[j] - a[k] == b[j] - b[k] && a[j] - a[k] == c[j] - c[k]) par[j] ++;
if (par[j]) { (sum *= par[j]) %= mod;
continue ;
}
Rep(k, 0, n + 2) if (j != k && a[j] == a[k] && b[j] == b[k] && c[j] == c[k]) sum = 0;
if (a[j] + b[j] == Dab && c[j] - a[j] == Dac) continue ;
if (a[j] + c[j] == Dac && b[j] - a[j] == Dab) continue ;
sum = 0;
}
(ans += sum) %= mod;
}
void Work(int *a, int *b, int *c) {
if (a[0] > b[0]) {
if (a[0] < c[0]) Calc(a, b, c, a[0] - b[0], c[0] - a[0]);
} else {
if (a[0] > c[0]) Calc(a, b, c, b[0] - a[0], a[0] - c[0]);
else Calc(a, b, c, b[0] - a[0], c[0] - a[0]);
Calc(a, b, c, b[0] - a[0], a[0] + c[0]);
}
if (c[0] > a[0]) Calc(a, b, c, a[0] + b[0], c[0] - a[0]);
}
int getCount(vector A, vector B, vector C) {
n = A.size();
Rep(i, 0, n - 1) a[i] = A[i], b[i] = B[i], c[i] = C[i];
Rep(i, 0, n - 1) {
int Dab, Dac, Dbc;
a[n + 1] = b[n] = Dab = a[i] + b[i];
a[n + 2] = c[n] = Dac = a[i] + c[i];
b[n + 2] = c[n + 1] = Dbc = b[i] + c[i];
memset(par, 0, sizeof(par));
LL sum = 1;
bool fl = 0;
Rep(j, 0, n - 1) if (j != i) {
Rep(k, 0, n + 2)
if (a[j] > a[k] && a[j] - a[k] == b[j] - b[k] && a[j] - a[k] == c[j] - c[k]) par[j] ++;
if (par[j]) { (sum *= par[j]) %= mod;
continue ;
}
Rep(k, 0, n + 2) if (j != k && a[j] == a[k] && b[j] == b[k] && c[j] == c[k]) fl = 1;
if (a[j] < a[i] && (a[j] + b[j] != Dab || a[j] + c[j] != Dac)) fl = 1;
if (b[j] < b[i] && (a[j] + b[j] != Dab || c[j] + b[j] != Dbc)) fl = 1;
if (c[j] < c[i] && (a[j] + c[j] != Dac || c[j] + b[j] != Dbc)) fl = 1;
if (a[j] >= a[i] && b[j] >= b[i] && c[j] >= c[i]) fl = 1;
}
if (!fl) (ans += sum) %= mod;
}
Rep(j, 0, n - 1) {
Rep(k, 0, n - 1)
if (a[j] > a[k] && a[j] - a[k] == b[j] - b[k] && a[j] - a[k] == c[j] - c[k]) p0[j] ++;
if (!p0[j]) { swap(a[j], a[0]), swap(b[j], b[0]), swap(c[j], c[0]);
break ;
}
}
Work(a, b, c);
Work(b, a, c);
Work(c, a, b);
return (int)ans;
}
};
推荐阅读
- c语言|【C语言】自定义类型 结构体 枚举 联合
- AIoT(人工智能+物联网)|程序员的数学【线性代数基础】
- topcoder|Topcoder SRM 661 Div1 Easy: MissingLCM
- HDU 5184 Brackets (卡特兰数)
- 高斯消元
- 水题纪念|【51nod - 1098】 最小方差(基础数学,公式化简,前缀和,积的前缀和)
- 扩展欧几里德算法(gcd扩展使用)
- 数学|CF 514D.Nature Reserve 几何,二分,交集
- codeforces|Codeforces Round #665 (Div. 2) C. Mere Array(数学)
- codeforces|Codeforces Round #665 (Div. 2) A. Distance and Axis(思维,数学)