文章目录
- 自定义排序
- 用匿名内部类实现一维数组升序
- Lamda表达式对二维数组进行第一维度排序
- 对二维数组进行双维度排序
- 源码
- Comparator的compare的源码
- Arrays.sort()
自定义排序
在做一些算法题时常常会需要对数组、自定义对象、集合进行排序. 在java中对数组排序提供了Arrays.sort()方法,对集合排序提供Collections.sort()方法。对自定义对象排序时要自己重写比较器,对象数组则调用Arrays.sort(),对象集合则调用Collections.sort()。两个方法默认都是升序,也可以重写比较器,实现降序。
Comparator接口可以实现自定义排序,实现Comparator接口时,要重写compare方法:int compare(Object o1, Object o2) 返回一个基本类型的整型如果要按照升序排序,则o1 小于o2,返回-1(负数),相等返回0,01大于02返回1(正数)如果要按照降序排序,则o1 小于o2,返回1(正数),相等返回0,01大于02返回-1(负数)
以下给出几种范例compare(int o1, int o2)
方法return o1 - o2
是升序,return o2 - o1
是降序。那么原因我们不妨跳进去源码看一下
用匿名内部类实现一维数组升序
import java.util.Arrays;
import java.util.Comparator;
public class ArraysDemo1 {
public static void main(String[] args) {
//int包装类对象数组,赋值
Integer[] arr = {12,15,32,16,20,25};
//传入引用类型对象arr,用匿名类实现Comparator接口,i1在前则为升序,反正降序
Arrays.sort(arr, new Comparator() {
@Override
public int compare(Integer i1, Integer i2) {
int num = i2 - i1;
return num;
}
});
//打印数组
System.out.println(Arrays.toString(arr));
}
}
Lamda表达式对二维数组进行第一维度排序 假如有一个二维数组是nums = [[5, 0], [4, 1], [6, 2]],这里面的每一个一维数组的第一个元素是值,第二个元素是序号,我想要排序的结果是nums = [[4, 1], [5, 0], [6, 2]],那可以这样做
public static void main(String[] args) {
int[][] nums = {{5, 0}, {4, 1}, {6, 2}};
//重写Comparator接口里面的compare方法,用Lambda表达式写比较简洁
Arrays.sort(nums, (o1, o2) -> o1[0] - o2[0]);
for (int i = 0;
i < nums.length;
i++) {
System.out.println("值:" + nums[i][0] + "序号:" + nums[i][1]);
}
/*
值:4序号:1
值:5序号:0
值:6序号:2
*/
}
对二维数组进行双维度排序
int[][] intervals = { { 2, 3 }, { 4, 5 }, { 6, 7 }, { 8, 9 }, { 1, 10 } };
Arrays.sort(intervals, new Comparator() {
@Override
public int compare(int[] o1, int[] o2) {
if (o1[0] == o2[0])
return o1[1] - o2[1];
return o1[0] - o2[0];
}
});
参考链接:
sort方法和自定义比较器的写法
Arrays类的sort方法对数组的升序和降序
如何用Arrays.sort对二维数组进行排序
详解JAVA使用Comparator接口实现自定义排序
Comparator的compare方法如何定义升序降序
源码 Comparator的compare的源码
public static void sort(T[] a, Comparator super T> c) {
if (c == null) {
sort(a);
} else {
if (LegacyMergeSort.userRequested)
legacyMergeSort(a, c);
else
TimSort.sort(a, 0, a.length, c, null, 0, 0);
}
}
private static void legacyMergeSort(T[] a, Comparator super T> c) {
T[] aux = a.clone();
if (c==null)
mergeSort(aux, a, 0, a.length, 0);
else
mergeSort(aux, a, 0, a.length, 0, c);
}
private static void mergeSort(Object[] src,
Object[] dest,
int low, int high, int off,
Comparator c) {
int length = high - low;
// Insertion sort on smallest arrays
if (length < INSERTIONSORT_THRESHOLD) {
for (int i=low;
ilow && c.compare(dest[j-1], dest[j])>0;
j--)
swap(dest, j, j-1);
return;
}// Recursively sort halves of dest into src
int destLow= low;
int destHigh = high;
low+= off;
high += off;
int mid = (low + high) >>> 1;
mergeSort(dest, src, low, mid, -off, c);
mergeSort(dest, src, mid, high, -off, c);
// If list is already sorted, just copy from src to dest.This is an
// optimization that results in faster sorts for nearly ordered lists.
if (c.compare(src[mid-1], src[mid]) <= 0) {
System.arraycopy(src, low, dest, destLow, length);
return;
}// Merge sorted halves (now in src) into dest
for(int i = destLow, p = low, q = mid;
i < destHigh;
i++) {
if (q >= high || p < mid && c.compare(src[p], src[q]) <= 0)
dest[i] = src[p++];
else
dest[i] = src[q++];
}
}
关键部分
if (length < INSERTIONSORT_THRESHOLD) {
for (int i=low;
ilow && c.compare(dest[j-1], dest[j])>0;
j--)
swap(dest, j, j-1);
return;
}
可以看到这里面调用了compare方法,当方法的返回值大于0的时候就将数组的前一个数和后一个数做交换。以升序为例来讲解,升序的话compare方法就 return o1 - o2,那么就是 return dest[j-1] - dest[j]。当 dest[j-1] > dest[j] 时,就进行交换。当 dest[j-1] <= dest[j] 时位置不变,从而达到数组升序。
Arrays.sort() jdk中的Arrays.sort()的实现是通过所谓的双轴快排的算法
双轴快排:
快速排序使用的是分治思想,将原问题分成若干个子问题进行递归解决。选择一个元素作为轴(pivot),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比轴元素小,另外一部分的所有数据都比轴元素大,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
双轴快排(DualPivotQuicksort),顾名思义有两个轴元素pivot1,pivot2,且pivot ≤
pivot2,将序列分成三段:x < pivot1、pivot1 ≤ x ≤ pivot2、x >pivot2,然后分别对三段进行递归。这个算法通常会比传统的快排效率更高,也因此被作为Arrays.java中给基本类型的数据排序的具体实现。
下面我们以JDK1.8中Arrays对int型数组的排序为例来介绍其中使用的双轴快排:
1.判断数组的长度是否大于286,大于则使用归并排序(merge sort),否则执行2。
// Use Quicksort on small arrays
if (right - left < QUICKSORT_THRESHOLD) {
sort(a, left, right, true);
return;
}
// Merge sort
......
2.判断数组长度是否小于47,小于则直接采用插入排序(insertion sort),否则执行3。
// Use insertion sort on tiny arrays
if (length < INSERTION_SORT_THRESHOLD) {
// Insertion sort
......
}
3.用公式
length/8+length/64+1
近似计算出数组长度的1/7。 // Inexpensive approximation of length / 7
int seventh = (length >> 3) + (length >> 6) + 1;
4.取5个根据经验得出的等距点。
/*
* Sort five evenly spaced elements around (and including) the
* center element in the range. These elements will be used for
* pivot selection as described below. The choice for spacing
* these elements was empirically determined to work well on
* a wide variety of inputs.
*/
int e3 = (left + right) >>> 1;
// The midpoint
int e2 = e3 - seventh;
int e1 = e2 - seventh;
int e4 = e3 + seventh;
int e5 = e4 + seventh;
5.将这5个元素进行插入排序
// Sort these elements using insertion sort
if (a[e2] < a[e1]) { int t = a[e2];
a[e2] = a[e1];
a[e1] = t;
}
if (a[e3] < a[e2]) { int t = a[e3];
a[e3] = a[e2];
a[e2] = t;
if (t < a[e1]) { a[e2] = a[e1];
a[e1] = t;
}
}
if (a[e4] < a[e3]) { int t = a[e4];
a[e4] = a[e3];
a[e3] = t;
if (t < a[e2]) { a[e3] = a[e2];
a[e2] = t;
if (t < a[e1]) { a[e2] = a[e1];
a[e1] = t;
}
}
}
if (a[e5] < a[e4]) { int t = a[e5];
a[e5] = a[e4];
a[e4] = t;
if (t < a[e3]) { a[e4] = a[e3];
a[e3] = t;
if (t < a[e2]) { a[e3] = a[e2];
a[e2] = t;
if (t < a[e1]) { a[e2] = a[e1];
a[e1] = t;
}
}
}
}
6.选取
a[e2]
,a[e4]
分别作为pivot1
,pivot2
。由于步骤5进行了排序,所以必有pivot1 <=pivot2
。定义两个指针less
和great
,less从最左边开始向右遍历,一直找到第一个不小于pivot1
的元素,great
从右边开始向左遍历,一直找到第一个不大于pivot2
的元素。 /*
* Use the second and fourth of the five sorted elements as pivots.
* These values are inexpensive approximations of the first and
* second terciles of the array. Note that pivot1 <= pivot2.
*/
int pivot1 = a[e2];
int pivot2 = a[e4];
/*
* The first and the last elements to be sorted are moved to the
* locations formerly occupied by the pivots. When partitioning
* is complete, the pivots are swapped back into their final
* positions, and excluded from subsequent sorting.
*/
a[e2] = a[left];
a[e4] = a[right];
/*
* Skip elements, which are less or greater than pivot values.
*/
while (a[++less] < pivot1);
while (a[--great] > pivot2);
7.接着定义指针
k
从less-1
开始向右遍历至great
,把小于pivot1
的元素移动到less
左边,大于pivot2
的元素移动到great
右边。这里要注意,我们已知great
处的元素小于pivot2
,但是它与pivot1
的大小关系,还需要进行判断,如果比pivot1
还小,需要移动到到less
左边,否则只需要交换到k
处。/*
* Partitioning:
*
*left partcenter partright part
* +--------------------------------------------------------------+
* |< pivot1|pivot1 <= && <= pivot2|?|> pivot2|
* +--------------------------------------------------------------+
*^^^
*|||
*lesskgreat
*
* Invariants:
*
*all in (left, less)< pivot1
*pivot1 <= all in [less, k)<= pivot2
*all in (great, right) > pivot2
*
* Pointer k is the first index of ?-part.
*/
outer:
for (int k = less - 1;
++k <= great;
) {
int ak = a[k];
if (ak < pivot1) { // Move a[k] to left part
a[k] = a[less];
/*
* Here and below we use "a[i] = b;
i++;
" instead
* of "a[i++] = b;
" due to performance issue.
*/
a[less] = ak;
++less;
} else if (ak > pivot2) { // Move a[k] to right part
while (a[great] > pivot2) {
if (great-- == k) {
break outer;
}
}
if (a[great] < pivot1) { // a[great] <= pivot2
a[k] = a[less];
a[less] = a[great];
++less;
} else { // pivot1 <= a[great] <= pivot2
a[k] = a[great];
}
/*
* Here and below we use "a[i] = b;
i--;
" instead
* of "a[i--] = b;
" due to performance issue.
*/
a[great] = ak;
--great;
}
}
8.将
less-1
处的元素移动到队头,great+1
处的元素移动到队尾,并把pivot1
和pivot2
分别放到less-1
和great+1
处。// Swap pivots into their final positions
a[left]= a[less- 1];
a[less- 1] = pivot1;
a[right] = a[great + 1];
a[great + 1] = pivot2;
9.至此,
less
左边的元素都小于pivot1
,great
右边的元素都大于pivot2
,分别对两部分进行同样的递归排序。// Sort left and right parts recursively, excluding known pivots
sort(a, left, less - 2, leftmost);
sort(a, great + 2, right, false);
10.对于中间的部分,如果大于4/7的数组长度,很可能是因为重复元素的存在,所以把
less
向右移动到第一个不等于pivot1
的地方,把great
向左移动到第一个不等于pivot2
的地方,然后再对less和great之间的部分进行递归排序。/*
* If center part is too large (comprises > 4/7 of the array),
* swap internal pivot values to ends.
*/
if (less < e1 && e5 < great) {
/*
* Skip elements, which are equal to pivot values.
*/
while (a[less] == pivot1) {
++less;
}
while (a[great] == pivot2) {
--great;
}
}
......
// Sort center part recursively
sort(a, less, great, false);
另外参考了其他博文,算法思路如下:
算法步骤
- 对于很小的数组(长度小于47),会使用插入排序。
- 选择两个点P1,P2作为轴心,比如我们可以使用第一个元素和最后一个元素。
- P1必须比P2要小,否则将这两个元素交换,现在将整个数组分为四部分:
(1)第一部分:比P1小的元素。
(2)第二部分:比P1大但是比P2小的元素。
(3)第三部分:比P2大的元素。
(4)第四部分:尚未比较的部分。
在开始比较前,除了轴点,其余元素几乎都在第四部分,直到比较完之后第四部分没有元素。 - 从第四部分选出一个元素a[K],与两个轴心比较,然后放到第一二三部分中的一个。
- 移动L,K,G指向。
- 重复 4 5 步,直到第四部分没有元素。
- 将P1与第一部分的最后一个元素交换。将P2与第三部分的第一个元素交换。
- 递归的将第一二三部分排序。
Arrays.sort对升序数组、降序数组和重复数组的排序效率有了很大的提升,这里面有几个重大的优化。
- 对于小数组来说,插入排序效率更高,每次递归到小于47的大小时,用插入排序代替快排,明显提升了性能。
- 双轴快排使用两个pivot,每轮把数组分成3段,在没有明显增加比较次数的情况下巧妙地减少了递归次数。
- pivot的选择上增加了随机性,却没有带来随机数的开销。
- 对重复数据进行了优化处理,避免了不必要交换和递归。