TensorRT 开始

TensorRT 是 NVIDIA 自家的高性能推理库,其 Getting Started 列出了各资料入口,如下:
TensorRT 开始
文章图片

本文基于当前的 TensorRT 8.2 版本,将一步步介绍从安装,直到加速推理自己的 ONNX 模型。
安装 进 TensorRT 下载页 选择版本下载,需注册登录。
TensorRT 开始
文章图片

本文选择了 TensorRT-8.2.2.1.Linux.x86_64-gnu.cuda-11.4.cudnn8.2.tar.gz,可以注意到与 CUDA cuDNN 要匹配好版本。也可以准备 NVIDIA Docker 拉取对应版本的 nvidia/cuda 镜像,再 ADD TensorRT 即可。

# 解压进 $HOME (以免 sudo 编译样例,为当前用户) tar -xzvf TensorRT-*.tar.gz -C $HOME/ # 软链到 /usr/local/TensorRT (以固定一个路径) sudo ln -s $HOME/TensorRT-8.2.2.1 /usr/local/TensorRT

之后,编译运行样例,保证 TensorRT 安装正确。
编译样例
样例在 TensorRT/samples,说明见 Sample Support Guide 或各样例目录里的 README.md
cd /usr/local/TensorRT/samples/# 设定环境变量,可见 Makefile.config export CUDA_INSTALL_DIR=/usr/local/cuda export CUDNN_INSTALL_DIR=/usr/local/cuda export ENABLE_DLA= export TRT_LIB_DIR=../lib export PROTOBUF_INSTALL_DIR=# 编译 make -j`nproc`# 运行 export LD_LIBRARY_PATH=/usr/local/TensorRT/lib:$LD_LIBRARY_PATH cd /usr/local/TensorRT/ ./bin/trtexec -h ./bin/sample_mnist -d data/mnist/ --fp16

运行结果参考:
$ ./bin/sample_mnist -d data/mnist/ --fp16 &&&& RUNNING TensorRT.sample_mnist [TensorRT v8202] # ./bin/sample_mnist -d data/mnist/ --fp16 [12/23/2021-20:20:16] [I] Building and running a GPU inference engine for MNIST [12/23/2021-20:20:16] [I] [TRT] [MemUsageChange] Init CUDA: CPU +322, GPU +0, now: CPU 333, GPU 600 (MiB) [12/23/2021-20:20:16] [I] [TRT] [MemUsageSnapshot] Begin constructing builder kernel library: CPU 333 MiB, GPU 600 MiB [12/23/2021-20:20:16] [I] [TRT] [MemUsageSnapshot] End constructing builder kernel library: CPU 468 MiB, GPU 634 MiB [12/23/2021-20:20:17] [I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +518, GPU +224, now: CPU 988, GPU 858 (MiB) [12/23/2021-20:20:17] [I] [TRT] [MemUsageChange] Init cuDNN: CPU +114, GPU +52, now: CPU 1102, GPU 910 (MiB) [12/23/2021-20:20:17] [I] [TRT] Local timing cache in use. Profiling results in this builder pass will not be stored. [12/23/2021-20:20:33] [I] [TRT] Some tactics do not have sufficient workspace memory to run. Increasing workspace size may increase performance, please check verbose output. [12/23/2021-20:20:34] [I] [TRT] Detected 1 inputs and 1 output network tensors. [12/23/2021-20:20:34] [I] [TRT] Total Host Persistent Memory: 8448 [12/23/2021-20:20:34] [I] [TRT] Total Device Persistent Memory: 1626624 [12/23/2021-20:20:34] [I] [TRT] Total Scratch Memory: 0 [12/23/2021-20:20:34] [I] [TRT] [MemUsageStats] Peak memory usage of TRT CPU/GPU memory allocators: CPU 2 MiB, GPU 13 MiB [12/23/2021-20:20:34] [I] [TRT] [BlockAssignment] Algorithm ShiftNTopDown took 0.01595ms to assign 3 blocks to 8 nodes requiring 57857 bytes. [12/23/2021-20:20:34] [I] [TRT] Total Activation Memory: 57857 [12/23/2021-20:20:34] [I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +8, now: CPU 1621, GPU 1116 (MiB) [12/23/2021-20:20:34] [I] [TRT] [MemUsageChange] Init cuDNN: CPU +0, GPU +8, now: CPU 1621, GPU 1124 (MiB) [12/23/2021-20:20:34] [I] [TRT] [MemUsageChange] TensorRT-managed allocation in building engine: CPU +0, GPU +4, now: CPU 0, GPU 4 (MiB) [12/23/2021-20:20:34] [I] [TRT] [MemUsageChange] Init CUDA: CPU +0, GPU +0, now: CPU 1622, GPU 1086 (MiB) [12/23/2021-20:20:34] [I] [TRT] Loaded engine size: 1 MiB [12/23/2021-20:20:34] [I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +8, now: CPU 1622, GPU 1096 (MiB) [12/23/2021-20:20:34] [I] [TRT] [MemUsageChange] Init cuDNN: CPU +1, GPU +8, now: CPU 1623, GPU 1104 (MiB) [12/23/2021-20:20:34] [I] [TRT] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +1, now: CPU 0, GPU 1 (MiB) [12/23/2021-20:20:34] [I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +8, now: CPU 1485, GPU 1080 (MiB) [12/23/2021-20:20:34] [I] [TRT] [MemUsageChange] Init cuDNN: CPU +0, GPU +8, now: CPU 1485, GPU 1088 (MiB) [12/23/2021-20:20:34] [I] [TRT] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +2, now: CPU 0, GPU 3 (MiB) [12/23/2021-20:20:34] [I] Input: @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@%+-:=@@@@@@@@@@@@ @@@@@@@%=-@@@**@@@@@@@ @@@@@@@:%#@-#@@@. #@@@@@@ @@@@@@*+@@@@:*@@@*@@@@@@ @@@@@@#+@@@@ @@@%@@@@@@@ @@@@@@@.:%@@.@@@. *@@@@@@@ @@@@@@@@-=@@@@. -@@@@@@@@ @@@@@@@@@%:+@- :@@@@@@@@@ @@@@@@@@@@@%.: -@@@@@@@@@@ @@@@@@@@@@@@@+#@@@@@@@@@@ @@@@@@@@@@@@@@+:@@@@@@@@@@ @@@@@@@@@@@@@@+*@@@@@@@@@ @@@@@@@@@@@@@@: =@@@@@@@@@ @@@@@@@@@@@@@@ :@@@@@@@@@@ @@@@@@@@@@@@@@ -@@@@@@@@@@ @@@@@@@@@@@@@# +@@@@@@@@@@ @@@@@@@@@@@@@* ++@@@@@@@@@ @@@@@@@@@@@@@**@@@@@@@@@ @@@@@@@@@@@@@#=@@@@@@@@@@ @@@@@@@@@@@@@@. +@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@@@@[12/23/2021-20:20:34] [I] Output: 0: 1: 2: 3: 4: 5: 6: 7: 8: ********** 9:&&&& PASSED TensorRT.sample_mnist [TensorRT v8202] # ./bin/sample_mnist -d data/mnist/ --fp16

快速开始
Quick Start Guide / Using The TensorRT Runtime API
准备教程代码,编译:
git clone --depth 1 https://github.com/NVIDIA/TensorRT.gitexport CUDA_INSTALL_DIR=/usr/local/cuda export CUDNN_INSTALL_DIR=/usr/local/cuda export TRT_LIB_DIR=/usr/local/TensorRT/lib# 编译 quickstart cd TensorRT/quickstart # Makefile.config #INCPATHS += -I"/usr/local/TensorRT/include" # common/logging.h #void log(Severity severity, const char* msg) noexcept override make# 运行环境 export PATH=/usr/local/TensorRT/bin:$PATH export LD_LIBRARY_PATH=/usr/local/TensorRT/lib:$LD_LIBRARY_PATH cd SemanticSegmentation

获取预训练 FCN-ResNet-101 模型,转成 ONNX:
# 创建本地环境 #conda create -n torch python=3.9 -y #conda activate torch #conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch -y # 不然,容器环境 #docker run --rm -it --gpus all -p 8888:8888 -v `pwd`:/workspace/SemanticSegmentation -w /workspace nvcr.io/nvidia/pytorch:20.12-py3 bash $ python export.py Exporting ppm image input.ppm Downloading: "https://github.com/pytorch/vision/archive/v0.6.0.zip" to /home/john/.cache/torch/hub/v0.6.0.zip Downloading: "https://download.pytorch.org/models/resnet101-5d3b4d8f.pth" to /home/john/.cache/torch/hub/checkpoints/resnet101-5d3b4d8f.pth 100%|████████████████████████████████████████| 170M/170M [00:27<00:00, 6.57MB/s] Downloading: "https://download.pytorch.org/models/fcn_resnet101_coco-7ecb50ca.pth" to /home/john/.cache/torch/hub/checkpoints/fcn_resnet101_coco-7ecb50ca.pth 100%|████████████████████████████████████████| 208M/208M [02:26<00:00, 1.49MB/s] Exporting ONNX model fcn-resnet101.onnx

再用 trtexec 将 ONNX 转成 TensorRT engine:
$ trtexec --onnx=fcn-resnet101.onnx --fp16 --workspace=64 --minShapes=input:1x3x256x256 --optShapes=input:1x3x1026x1282 --maxShapes=input:1x3x1440x2560 --buildOnly --saveEngine=fcn-resnet101.engine ... [01/07/2022-20:20:00] [I] Engine built in 406.011 sec. &&&& PASSED TensorRT.trtexec [TensorRT v8202] ...

随机输入,测试 engine:
$ trtexec --shapes=input:1x3x1026x1282 --loadEngine=fcn-resnet101.engine ... [01/07/2022-20:20:00] [I] === Performance summary === [01/07/2022-20:20:00] [I] Throughput: 12.4749 qps [01/07/2022-20:20:00] [I] Latency: min = 76.9746 ms, max = 98.8354 ms, mean = 79.5844 ms, median = 78.0542 ms, percentile(99%) = 98.8354 ms [01/07/2022-20:20:00] [I] End-to-End Host Latency: min = 150.942 ms, max = 188.431 ms, mean = 155.834 ms, median = 152.444 ms, percentile(99%) = 188.431 ms [01/07/2022-20:20:00] [I] Enqueue Time: min = 0.390625 ms, max = 1.61279 ms, mean = 1.41182 ms, median = 1.46136 ms, percentile(99%) = 1.61279 ms [01/07/2022-20:20:00] [I] H2D Latency: min = 1.25977 ms, max = 1.53467 ms, mean = 1.27415 ms, median = 1.26514 ms, percentile(99%) = 1.53467 ms [01/07/2022-20:20:00] [I] GPU Compute Time: min = 75.2869 ms, max = 97.1318 ms, mean = 77.8847 ms, median = 76.3599 ms, percentile(99%) = 97.1318 ms [01/07/2022-20:20:00] [I] D2H Latency: min = 0.408447 ms, max = 0.454346 ms, mean = 0.425577 ms, median = 0.423004 ms, percentile(99%) = 0.454346 ms [01/07/2022-20:20:00] [I] Total Host Walltime: 3.2866 s [01/07/2022-20:20:00] [I] Total GPU Compute Time: 3.19327 s [01/07/2022-20:20:00] [I] Explanations of the performance metrics are printed in the verbose logs. [01/07/2022-20:20:00] [I] &&&& PASSED TensorRT.trtexec [TensorRT v8202] ...

运行教程,使用 engine:
$ ./bin/segmentation_tutorial [01/07/2022-20:20:34] [I] [TRT] [MemUsageChange] Init CUDA: CPU +322, GPU +0, now: CPU 463, GPU 707 (MiB) [01/07/2022-20:20:34] [I] [TRT] Loaded engine size: 132 MiB [01/07/2022-20:20:35] [I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +520, GPU +224, now: CPU 984, GPU 1065 (MiB) [01/07/2022-20:20:35] [I] [TRT] [MemUsageChange] Init cuDNN: CPU +115, GPU +52, now: CPU 1099, GPU 1117 (MiB) [01/07/2022-20:20:35] [I] [TRT] [MemUsageChange] TensorRT-managed allocation in engine deserialization: CPU +0, GPU +131, now: CPU 0, GPU 131 (MiB) [01/07/2022-20:20:35] [I] Running TensorRT inference for FCN-ResNet101 [01/07/2022-20:20:35] [I] [TRT] [MemUsageChange] Init cuBLAS/cuBLASLt: CPU +0, GPU +10, now: CPU 966, GPU 1109 (MiB) [01/07/2022-20:20:35] [I] [TRT] [MemUsageChange] Init cuDNN: CPU +0, GPU +8, now: CPU 966, GPU 1117 (MiB) [01/07/2022-20:20:35] [I] [TRT] [MemUsageChange] TensorRT-managed allocation in IExecutionContext creation: CPU +0, GPU +722, now: CPU 0, GPU 853 (MiB)

TensorRT 开始
文章图片

实践 以上给到了官方样例与教程的编译使用。这里,另外找了个 RVM 的模型,从头开始试一试。
准备模型
Robust Video Matting (RVM) 稳定视频抠像,可在任意视频上做实时高清抠像。有 Webcam Demo 可以网页上体验。
准备 ONNX 模型 rvm_mobilenetv3_fp32.onnx,其 推断文档 给出了模型输入输出:
  • 输入: [src, r1i, r2i, r3i, r4i, downsample_ratio]
    • src:输入帧,RGB 通道,形状为 [B, C, H, W],范围为0~1
    • rXi:记忆输入,初始值是是形状为 [1, 1, 1, 1] 的零张量
    • downsample_ratio 下采样比,张量形状为 [1]
    • 只有 downsample_ratio 必须是 FP32,其他输入必须和加载的模型使用一样的 dtype
  • 输出: [fgr, pha, r1o, r2o, r3o, r4o]
    • fgr, pha:前景和透明度通道输出,范围为 0~1
    • rXo:记忆输出
准备输入图像 input.jpg 。不用视频,保持代码简单些。
准备环境
  • Anaconda
  • PyTorch
conda create -n torch python=3.9 -y conda activate torchconda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch -y# Requirements #https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html#requirements pip install onnx onnxruntime-gpu==1.10

运行 ONNX 模型
rvm_onnx_infer.py:
import onnxruntime as ort import numpy as np from PIL import Image# 读取图像 with Image.open('input.jpg') as img: img.load() #HWC [0,255] > BCHW [0,1] src = https://www.it610.com/article/np.array(img) src = np.moveaxis(src, -1, 0) .astype(np.float32) src = src[np.newaxis, :] / 255.# 载入模型 sess = ort.InferenceSession('rvm_mobilenetv3_fp32.onnx', providers=['CUDAExecutionProvider'])# 创建 io binding io = sess.io_binding()# 在 CUDA 上创建张量 rec = [ ort.OrtValue.ortvalue_from_numpy(np.zeros([1, 1, 1, 1], dtype=np.float32), 'cuda') ] * 4 downsample_ratio = ort.OrtValue.ortvalue_from_numpy(np.asarray([0.25], dtype=np.float32), 'cuda')# 设置输出项 for name in ['fgr', 'pha', 'r1o', 'r2o', 'r3o', 'r4o']: io.bind_output(name, 'cuda')# 推断 io.bind_cpu_input('src', src) io.bind_ortvalue_input('r1i', rec[0]) io.bind_ortvalue_input('r2i', rec[1]) io.bind_ortvalue_input('r3i', rec[2]) io.bind_ortvalue_input('r4i', rec[3]) io.bind_ortvalue_input('downsample_ratio', downsample_ratio)sess.run_with_iobinding(io)fgr, pha, *rec = io.get_outputs()# 只将 `fgr` 和 `pha` 回传到 CPU fgr = fgr.numpy() pha = pha.numpy()# 合成 RGBA com = np.where(pha > 0, fgr, pha) com = np.concatenate([com, pha], axis=1) # + alpha #BCHW [0,1] > HWC [0,255] com = np.squeeze(com, axis=0) com = np.moveaxis(com, 0, -1) * 255img = Image.fromarray(com.astype(np.uint8)) img.show()

运行:
python rvm_onnx_infer.py --model "rvm_mobilenetv3_fp32.onnx" --input-image "input.jpg" --precision float32 --show

结果(背景透明):
TensorRT 开始
文章图片

ONNX 转成 TRT 模型
trtexec 将 ONNX 转成 TensorRT engine:
export PATH=/usr/local/TensorRT/bin:$PATH export LD_LIBRARY_PATH=/usr/local/TensorRT/lib:$LD_LIBRARY_PATHtrtexec --onnx=rvm_mobilenetv3_fp32.onnx --workspace=64 --saveEngine=rvm_mobilenetv3_fp32.engine --verbose

【TensorRT 开始】发生问题:
[01/08/2022-20:20:36] [E] [TRT] ModelImporter.cpp:773: While parsing node number 3 [Resize -> "389"]: [01/08/2022-20:20:36] [E] [TRT] ModelImporter.cpp:774: --- Begin node --- [01/08/2022-20:20:36] [E] [TRT] ModelImporter.cpp:775: input: "src" input: "386" input: "388" output: "389" name: "Resize_3" op_type: "Resize" attribute { name: "coordinate_transformation_mode" s: "pytorch_half_pixel" type: STRING } attribute { name: "cubic_coeff_a" f: -0.75 type: FLOAT } attribute { name: "mode" s: "linear" type: STRING } attribute { name: "nearest_mode" s: "floor" type: STRING }[01/08/2022-20:20:36] [E] [TRT] ModelImporter.cpp:776: --- End node --- [01/08/2022-20:20:36] [E] [TRT] ModelImporter.cpp:779: ERROR: builtin_op_importers.cpp:3608 In function importResize: [8] Assertion failed: scales.is_weights() && "Resize scales must be an initializer!"

这时,需要动手改动模型了。
首先,安装必要工具:
snap install netron pip install onnx-simplifier pip install onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com

之后,Netron 查看模型 Resize_3 节点:
TensorRT 开始
文章图片

发现其 scales 输入是依据 downsample_ratio 得到的,即 [1,1,downsample_ratio,downsample_ratio],可用 ONNX GraphSurgeon 修改成常量。
最后,模型改动步骤如下:
# ONNX 模型简化,并改为静态输入尺寸 python -m onnxsim rvm_mobilenetv3_fp32.onnx rvm_mobilenetv3_fp32_sim.onnx \ --input-shape src:1,3,1080,1920 r1i:1,1,1,1 r2i:1,1,1,1 r3i:1,1,1,1 r4i:1,1,1,1# ONNX GraphSurgeon 修改模型 python rvm_onnx_modify.py -i rvm_mobilenetv3_fp32_sim.onnx --input-size 1920 1280# trtexec 将 ONNX 转成 TensorRT engine trtexec --onnx=rvm_mobilenetv3_fp32_sim_modified.onnx --workspace=64 --saveEngine=rvm_mobilenetv3_fp32_sim_modified.engine

rvm_onnx_modify.py:
def modify(input: str, output: str, downsample_ratio: float = 0.25) -> None: print(f'\nonnx load: {input}') graph = gs.import_onnx(onnx.load(input))_print_graph(graph)# update node Resize_3: scales resize_3 = [n for n in graph.nodes if n.name == 'Resize_3'][0] print() print(resize_3)scales = gs.Constant('388', np.asarray([1, 1, downsample_ratio, downsample_ratio], dtype=np.float32))resize_3.inputs = [i if i.name != '388' else scales for i in resize_3.inputs] print() print(resize_3)# remove input downsample_ratio graph.inputs = [i for i in graph.inputs if i.name != 'downsample_ratio']# remove node Concat_2 concat_2 = [n for n in graph.nodes if n.name == 'Concat_2'][0] concat_2.outputs.clear()# remove unused nodes/tensors graph.cleanup()onnx.save(gs.export_onnx(graph), output)

ONNX 与 TRT 模型输出差异
可用 Polygraphy 查看 ONNX 与 TRT 模型的输出差异。
首先,安装
# 安装 TensorRT Python API cd /usr/local/TensorRT/python/ pip install tensorrt-8.2.2.1-cp39-none-linux_x86_64.whlexport LD_LIBRARY_PATH=/usr/local/TensorRT/lib:$LD_LIBRARY_PATH python -c "import tensorrt; print(tensorrt.__version__)"# 安装 Polygraphy,或者通过 TensorRT/tools/Polygraphy 源码安装 python -m pip install colored polygraphy --extra-index-url https://pypi.ngc.nvidia.com

运行 ONNX 与 TRT 模型,对比输出误差:
# 运行 ONNX 模型,保存输入输出 polygraphy run rvm_mobilenetv3_fp32_sim_modified.onnx --onnxrt --val-range [0,1] --save-inputs onnx_inputs.json --save-outputs onnx_outputs.json # 运行 TRT 模型,载入 ONNX 输入输出,对比输出的相对误差与绝对误差 polygraphy run rvm_mobilenetv3_fp32_sim_modified.engine --model-type engine --trt --load-inputs onnx_inputs.json --load-outputs onnx_outputs.json --rtol 1e-3 --atol 1e-3

可见 fp32 精度误差在 1e-3 以内,PASSED
[I]PASSED | All outputs matched | Outputs: ['r4o', 'r3o', 'r2o', 'r1o', 'fgr', 'pha'] [I] PASSED | Command: /home/john/anaconda3/envs/torch/bin/polygraphy run rvm_mobilenetv3_fp32_sim_modified.engine --model-type engine --trt --load-inputs onnx_inputs.json --load-outputs onnx_outputs.json --rtol 1e-3 --atol 1e-3

也试了 fp16,其精度损失就比较大,FAILED
[E]FAILED | Mismatched outputs: ['r4o', 'r3o', 'r2o', 'r1o', 'fgr', 'pha'] [!] FAILED | Command: /home/john/anaconda3/envs/torch/bin/polygraphy run rvm_mobilenetv3_fp16_sim_modified.engine --model-type engine --trt --load-inputs onnx_inputs.json --load-outputs onnx_outputs.json --rtol 1e-3 --atol 1e-3

运行 TRT 模型
这里以 TensorRT C++ runtime APIs 为例,将转出的 RVM TRT 模型运行起来。完整代码见 rvm_infer.cc。
1. 载入模型:创建 runtime,反序列化 TRT 模型文件的数据
static Logger logger{Logger::Severity::kINFO}; auto runtime = std::unique_ptr(nvinfer1::createInferRuntime(logger)); auto engine = runtime->deserializeCudaEngine(engine_data.data(), fsize, nullptr);

遍历全部输入输出 bindings
auto nb = engine->getNbBindings(); for (int32_t i = 0; i < nb; i++) { auto is_input = engine->bindingIsInput(i); auto name = engine->getBindingName(i); auto dims = engine->getBindingDimensions(i); auto datatype = engine->getBindingDataType(i); // ... }

Engine Name=Unnamed Network 0 DeviceMemorySize=148 MiB MaxBatchSize=1 Bindings Input[0] name=src dims=[1,3,1080,1920] datatype=FLOAT Input[1] name=r1i dims=[1,1,1,1] datatype=FLOAT Input[2] name=r2i dims=[1,1,1,1] datatype=FLOAT Input[3] name=r3i dims=[1,1,1,1] datatype=FLOAT Input[4] name=r4i dims=[1,1,1,1] datatype=FLOAT Output[5] name=r4o dims=[1,64,18,32] datatype=FLOAT Output[6] name=r3o dims=[1,40,36,64] datatype=FLOAT Output[7] name=r2o dims=[1,20,72,128] datatype=FLOAT Output[8] name=r1o dims=[1,16,144,256] datatype=FLOAT Output[9] name=fgr dims=[1,3,1080,1920] datatype=FLOAT Output[10] name=pha dims=[1,1,1080,1920] datatype=FLOAT

之后,分配好所有 bindingsdevice 内存:
auto nb = engine->getNbBindings(); std::vector bindings(nb, nullptr); std::vector bindings_size(nb, 0); for (int32_t i = 0; i < nb; i++) { auto dims = engine->getBindingDimensions(i); auto size = GetMemorySize(dims, sizeof(float)); if (cudaMalloc(&bindings[i], size) != cudaSuccess) { std::cerr << "ERROR: cuda memory allocation failed, size = " << size << " bytes" << std::endl; return false; } bindings_size[i] = size; }

到此,准备工作就好了。
2. 前处理:输入数据处理成输入格式,存进输入 bindings
用 OpenCV 读取图像,缩放成 src 的输入尺寸。再把数据从 BGR [0,255] 处理成 RGB [0,1]。因 batch=1,所以处理时可忽略。
// img: HWC BGR [0,255] u8 auto img = cv::imread(input_filename, cv::IMREAD_COLOR); if (src_h != img.rows || src_w != img.cols) { cv::resize(img, img, cv::Size(src_w, src_h)); }// src: BCHW RGB [0,1] fp32 auto src = https://www.it610.com/article/cv::Mat(img.rows, img.cols, CV_32FC3); { auto src_data = (float*)(src.data); for (int y = 0; y < src_h; ++y) { for (int x = 0; x < src_w; ++x) { auto &&bgr = img.at(y, x); /*r*/ *(src_data + y*src_w + x) = bgr[2] / 255.; /*g*/ *(src_data + src_n + y*src_w + x) = bgr[1] / 255.; /*b*/ *(src_data + src_n*2 + y*src_w + x) = bgr[0] / 255.; } } } if (cudaMemcpyAsync(bindings[0], src.data, bindings_size[0], cudaMemcpyHostToDevice, stream) != cudaSuccess) { std::cerr << "ERROR: CUDA memory copy of src failed, size = " << bindings_size[0] << " bytes" << std::endl; return false; }

3. 推理:将 bindings 给到 engine 执行上下文进行推理
auto context = std::unique_ptr( engine->createExecutionContext()); if (!context) { return false; }bool status = context->enqueueV2(bindings.data(), stream, nullptr); if (!status) { std::cout << "ERROR: TensorRT inference failed" << std::endl; return false; }

4. 后处理:从输出 bindings 取出数据,根据输出格式处理数据
cv::Mat 接收输出的前景 fgr 和透明通道 pha
auto fgr = cv::Mat(src_h, src_w, CV_32FC3); // BCHW RGB [0,1] fp32 if (cudaMemcpyAsync(fgr.data, bindings[9], bindings_size[9], cudaMemcpyDeviceToHost, stream) != cudaSuccess) { std::cerr << "ERROR: CUDA memory copy of output failed, size = " << bindings_size[9] << " bytes" << std::endl; return false; } auto pha = cv::Mat(src_h, src_w, CV_32FC1); // BCHW A [0,1] fp32 if (cudaMemcpyAsync(pha.data, bindings[10], bindings_size[10], cudaMemcpyDeviceToHost, stream) != cudaSuccess) { std::cerr << "ERROR: CUDA memory copy of output failed, size = " << bindings_size[10] << " bytes" << std::endl; return false; } cudaStreamSynchronize(stream);

再将 fgr pha 合成 RGBA 数据,并复原成原尺寸:
// Compose `fgr` and `pha` auto com = cv::Mat(src_h, src_w, CV_8UC4); // HWC BGRA [0,255] u8 { auto fgr_data = https://www.it610.com/article/(float*)(fgr.data); auto pha_data = (float*)(pha.data); for (int y = 0; y < com.rows; ++y) { for (int x = 0; x < com.cols; ++x) { auto &&elem = com.at(y, x); auto alpha = *(pha_data + y*src_w + x); if (alpha > 0) { /*r*/ elem[2] = *(fgr_data + y*src_w + x) * 255; /*g*/ elem[1] = *(fgr_data + src_n + y*src_w + x) * 255; /*b*/ elem[0] = *(fgr_data + src_n*2 + y*src_w + x) * 255; } else { /*r*/ elem[2] = 0; /*g*/ elem[1] = 0; /*b*/ elem[0] = 0; } /*a*/ elem[3] = alpha * 255; } } } if (dst_h != com.rows || dst_w != com.cols) { cv::resize(com, com, cv::Size(dst_w, dst_h)); }

5. 运行得到的抠像结果(背景透明):
TensorRT 开始
文章图片

最后 想入门 TensorRT 的,动手实践一下吧!
GoCoding 个人实践的经验分享,可关注公众号!

    推荐阅读