本文参考代码链接代码
yolo4-tiny的整体结构,如下图所示
文章图片
从图中可以看到,yolo4 tiny大致可以分为以下几个模块:
1.CSPDarknet53-tiny,是整个网络的backbone
2.FPN
3.yolo head
下面分别作一介绍:
CSPDarknet53 tiny 由3个BasicConv块和3个Resblock_body块构成。
BasicConv比较简单,其实就是一个卷积+BN+LeakyReLU的结构,代码如下所示:
class BasicConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1):
super(BasicConv, self).__init__()self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, kernel_size//2, bias=False)
self.bn = nn.BatchNorm2d(out_channels)
self.activation = nn.LeakyReLU(0.1)def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.activation(x)
return x
Resblock_body较为复杂,如下图所示
文章图片
它由4个BasicConv块、1个MaxPooling块构成,输入数据经过conv1后,分为两部分,后半部分经过conv2计算后,得到route1,route1进一步经过conv3,计算得到结果,然后再将该结果和route1进行拼接(concat),输入conv4,计算得到feat,然后将route和feat进行拼接,得到的结果输入maxpool后得到最终的输出。
以下是具体的代码:
#---------------------------------------------------#
#CSPdarknet53-tiny的结构块
#存在一个大残差边
#这个大残差边绕过了很多的残差结构
#---------------------------------------------------#
class Resblock_body(nn.Module):
def __init__(self, in_channels, out_channels):
super(Resblock_body, self).__init__()
self.out_channels = out_channelsself.conv1 = BasicConv(in_channels, out_channels, 3)self.conv2 = BasicConv(out_channels//2, out_channels//2, 3)
self.conv3 = BasicConv(out_channels//2, out_channels//2, 3)self.conv4 = BasicConv(out_channels, out_channels, 1)
self.maxpool = nn.MaxPool2d([2,2],[2,2])def forward(self, x):
# 利用一个3x3卷积进行特征整合
x = self.conv1(x)
# 引出一个大的残差边route
route = xc = self.out_channels
# 对特征层的通道进行分割,取第二部分作为主干部分。
x = torch.split(x, c//2, dim = 1)[1]
# 对主干部分进行3x3卷积
x = self.conv2(x)
# 引出一个小的残差边route_1
route1 = x
# 对第主干部分进行3x3卷积
x = self.conv3(x)
# 主干部分与残差部分进行相接
x = torch.cat([x,route1], dim = 1) # 对相接后的结果进行1x1卷积
x = self.conv4(x)
feat = x
x = torch.cat([route, x], dim = 1)# 利用最大池化进行高和宽的压缩
x = self.maxpool(x)
return x,feat
可以看到,resblock_body块有两个输出,一个是feat,另一个是池化后得到的最终结果。
最终,根据Yolo4 tiny总体的结构图,我们可以得到backbone的具体代码:
class CSPDarkNet(nn.Module):
def __init__(self):
super(CSPDarkNet, self).__init__()
# 首先利用两次步长为2x2的3x3卷积进行高和宽的压缩
# 416,416,3 -> 208,208,32 -> 104,104,64
self.conv1 = BasicConv(3, 32, kernel_size=3, stride=2)
self.conv2 = BasicConv(32, 64, kernel_size=3, stride=2)# 104,104,64 -> 52,52,128
self.resblock_body1 =Resblock_body(64, 64)
# 52,52,128 -> 26,26,256
self.resblock_body2 =Resblock_body(128, 128)
# 26,26,256 -> 13,13,512
self.resblock_body3 =Resblock_body(256, 256)
# 13,13,512 -> 13,13,512
self.conv3 = BasicConv(512, 512, kernel_size=3)self.num_features = 1
# 进行权值初始化
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()def forward(self, x):
# 416,416,3 -> 208,208,32 -> 104,104,64
x = self.conv1(x)
x = self.conv2(x)# 104,104,64 -> 52,52,128
x, _= self.resblock_body1(x)
# 52,52,128 -> 26,26,256
x, _= self.resblock_body2(x)
# 26,26,256 -> x为13,13,512
#-> feat1为26,26,256
x, feat1= self.resblock_body3(x)# 13,13,512 -> 13,13,512
x = self.conv3(x)
feat2 = x
return feat1,feat2
该backbone有两个输出,分别为26x26x256的feat1和13x13x512的feat2
FPN FPN的详细结构,如下图所示
文章图片
它包括conv_for_P5、upsample和concat等操作,feat2经过conv_for_P5后,得到256x13x13的输出P5,P5一方面输入至yolo_headP5进一步处理,另一方面经过upsample操作(包括一个卷积操作和一个上采样操作)和feat1拼接,得到384x26x26的P4。
以下是upsample模块的具体代码:
class Upsample(nn.Module):
def __init__(self, in_channels, out_channels):
super(Upsample, self).__init__()self.upsample = nn.Sequential(
BasicConv(in_channels, out_channels, 1),
nn.Upsample(scale_factor=2, mode='nearest')
)def forward(self, x,):
x = self.upsample(x)
return x
Yolo Head yolo head由两个卷积层、一个激活函数层构成,如下图所示
文章图片
代码:
def yolo_head(filters_list, in_filters):
m = nn.Sequential(
BasicConv(in_filters, filters_list[0], 3),
nn.Conv2d(filters_list[0], filters_list[1], 1),
)
return m
Yolo4 Tiny 经过上述分析,不难得到总的yolo4 tiny代码
#---------------------------------------------------#
#yolo_body
#---------------------------------------------------#
class YoloBody(nn.Module):
def __init__(self, anchors_mask, num_classes, phi=0, pretrained=False):
super(YoloBody, self).__init__()
self.phi= phi
self.backbone= darknet53_tiny(pretrained)self.conv_for_P5= BasicConv(512,256,1)
self.yolo_headP5= yolo_head([512, len(anchors_mask[0]) * (5 + num_classes)],256)self.upsample= Upsample(256,128)
self.yolo_headP4= yolo_head([256, len(anchors_mask[1]) * (5 + num_classes)],384)def forward(self, x):
#---------------------------------------------------#
#生成CSPdarknet53_tiny的主干模型
#feat1的shape为26,26,256
#feat2的shape为13,13,512
#---------------------------------------------------#
feat1, feat2 = self.backbone(x)# 13,13,512 -> 13,13,256
P5 = self.conv_for_P5(feat2)
# 13,13,256 -> 13,13,512 -> 13,13,255
out0 = self.yolo_headP5(P5) # 13,13,256 -> 13,13,128 -> 26,26,128
P5_Upsample = self.upsample(P5)
# 26,26,256 + 26,26,128 -> 26,26,384P4 = torch.cat([P5_Upsample,feat1],axis=1)# 26,26,384 -> 26,26,256 -> 26,26,255
out1 = self.yolo_headP4(P4)return out0, out1
为了加深理解,博主还手动实现了一个yolo4 tiny前向推理的代码
import torch
import numpy as np
import torch.nn.functional as Fdef FusedBasicConv(x,w,b,s,p=1):
x=F.conv2d(input=x,weight=w,bias=b,stride=s,padding=p)
return F.leaky_relu(input=x,negative_slope=0.1)def FusedResBlock(x,n,c,w1,w2,w3,w4,b1,b2,b3,b4):
x=F.conv2d(input=x,weight=w1,bias=b1,stride=1,padding=1)
x=F.leaky_relu(x,negative_slope=0.1)
route=x
#
x=F.conv2d(input=x[:,n//2:n,:,:],weight=w2,bias=b2,stride=1,padding=1)
route1=F.leaky_relu(input=x,negative_slope=0.1)
#
x=F.conv2d(input=route1,weight=w3,bias=b3,stride=1,padding=1)
x=F.leaky_relu(input=x,negative_slope=0.1)
#
x=torch.cat([x,route1],dim=1)
#
x=F.conv2d(input=x,weight=w4,bias=b4,stride=1,padding=0)
feat=F.leaky_relu(input=x,negative_slope=0.1)
#
x=torch.cat([route,feat],dim=1)
x=F.max_pool2d(x,kernel_size=2,stride=2)
return x,featclass MyCSPdarknet53_tiny:
def __init__(self):
self.basic_conv1_w=None
self.basic_conv1_b=None
self.basic_conv2_w=None
self.basic_conv2_b=None
self.basic_conv3_w=None
self.basic_conv3_b=Nonedef load_weight(self,dir):
#basic
self.basic_conv1_w = torch.from_numpy(np.fromfile(dir + "\\BasicConv1\\w.bin",dtype=np.float32)).view(32,3,3,3)
self.basic_conv1_b = torch.from_numpy(np.fromfile(dir + "\\BasicConv1\\b.bin",dtype=np.float32))
self.basic_conv2_w = torch.from_numpy(np.fromfile(dir + "\\BasicConv2\\w.bin", dtype=np.float32)).view(64,32,3, 3)
self.basic_conv2_b = torch.from_numpy(np.fromfile(dir + "\\BasicConv2\\b.bin", dtype=np.float32))
self.basic_conv3_w = torch.from_numpy(np.fromfile(dir + "\\BasicConv3\\w.bin", dtype=np.float32)).view(512,512,3, 3)
self.basic_conv3_b = torch.from_numpy(np.fromfile(dir + "\\BasicConv3\\b.bin", dtype=np.float32))
#resblock1,64,64
self.resblock1_w1 = torch.from_numpy(np.fromfile(dir + "\\ResBlock1\\w1.bin",dtype=np.float32)).view(64,64,3,3)
self.resblock1_b1 = torch.from_numpy(np.fromfile(dir + "\\ResBlock1\\b1.bin",dtype=np.float32))
self.resblock1_w2 = torch.from_numpy(np.fromfile(dir + "\\ResBlock1\\w2.bin", dtype=np.float32)).view(32,32,3,3)
self.resblock1_b2 = torch.from_numpy(np.fromfile(dir + "\\ResBlock1\\b2.bin", dtype=np.float32))
self.resblock1_w3 = torch.from_numpy(np.fromfile(dir + "\\ResBlock1\\w3.bin", dtype=np.float32)).view(32,32,3,3)
self.resblock1_b3 = torch.from_numpy(np.fromfile(dir + "\\ResBlock1\\b3.bin", dtype=np.float32))
self.resblock1_w4 = torch.from_numpy(np.fromfile(dir + "\\ResBlock1\\w4.bin", dtype=np.float32)).view(64,64,1,1)
self.resblock1_b4 = torch.from_numpy(np.fromfile(dir + "\\ResBlock1\\b4.bin", dtype=np.float32))
#resblock2,128,128
self.resblock2_w1 = torch.from_numpy(np.fromfile(dir + "\\ResBlock2\\w1.bin", dtype=np.float32)).view(128,128,3,3)
self.resblock2_b1 = torch.from_numpy(np.fromfile(dir + "\\ResBlock2\\b1.bin", dtype=np.float32))
self.resblock2_w2 = torch.from_numpy(np.fromfile(dir + "\\ResBlock2\\w2.bin", dtype=np.float32)).view(64,64,3,3)
self.resblock2_b2 = torch.from_numpy(np.fromfile(dir + "\\ResBlock2\\b2.bin", dtype=np.float32))
self.resblock2_w3 = torch.from_numpy(np.fromfile(dir + "\\ResBlock2\\w3.bin", dtype=np.float32)).view(64,64,3,3)
self.resblock2_b3 = torch.from_numpy(np.fromfile(dir + "\\ResBlock2\\b3.bin", dtype=np.float32))
self.resblock2_w4 = torch.from_numpy(np.fromfile(dir + "\\ResBlock2\\w4.bin", dtype=np.float32)).view(128,128,1,1)
self.resblock2_b4 = torch.from_numpy(np.fromfile(dir + "\\ResBlock2\\b4.bin", dtype=np.float32))
#resblock3,256,256
self.resblock3_w1 = torch.from_numpy(np.fromfile(dir + "\\ResBlock3\\w1.bin", dtype=np.float32)).view(256,256,3,3)
self.resblock3_b1 = torch.from_numpy(np.fromfile(dir + "\\ResBlock3\\b1.bin", dtype=np.float32))
self.resblock3_w2 = torch.from_numpy(np.fromfile(dir + "\\ResBlock3\\w2.bin", dtype=np.float32)).view(128,128,3,3)
self.resblock3_b2 = torch.from_numpy(np.fromfile(dir + "\\ResBlock3\\b2.bin", dtype=np.float32))
self.resblock3_w3 = torch.from_numpy(np.fromfile(dir + "\\ResBlock3\\w3.bin", dtype=np.float32)).view(128,128,3,3)
self.resblock3_b3 = torch.from_numpy(np.fromfile(dir + "\\ResBlock3\\b3.bin", dtype=np.float32))
self.resblock3_w4 = torch.from_numpy(np.fromfile(dir + "\\ResBlock3\\w4.bin", dtype=np.float32)).view(256,256,1,1)
self.resblock3_b4 = torch.from_numpy(np.fromfile(dir + "\\ResBlock3\\b4.bin", dtype=np.float32))def forward(self,x):
x=FusedBasicConv(x,self.basic_conv1_w,self.basic_conv1_b,2)
x=FusedBasicConv(x,self.basic_conv2_w,self.basic_conv2_b,2)
x,_=FusedResBlock(x,64,64,
self.resblock1_w1,self.resblock1_w2,self.resblock1_w3,self.resblock1_w4,
self.resblock1_b1,self.resblock1_b2,self.resblock1_b3,self.resblock1_b4)
x,_=FusedResBlock(x,128,128,
self.resblock2_w1, self.resblock2_w2, self.resblock2_w3, self.resblock2_w4,
self.resblock2_b1, self.resblock2_b2, self.resblock2_b3, self.resblock2_b4)
x,feat1=FusedResBlock(x,256,256,
self.resblock3_w1, self.resblock3_w2, self.resblock3_w3, self.resblock3_w4,
self.resblock3_b1, self.resblock3_b2, self.resblock3_b3, self.resblock3_b4)
feat2=FusedBasicConv(x,self.basic_conv3_w,self.basic_conv3_b,1)
return feat1,feat2#############################################################################
class MyYolo:
def __init__(self):
self.backbone=MyCSPdarknet53_tiny()
#conv_forP5
self.conv_forP5_w=None
self.conv_forP5_b=None
#headP4
self.yolo_headP4_w1=None
self.yolo_headP4_w2=None
self.yolo_headP4_b1=None
self.yolo_headP4_b2=None
#headP5
self.yolo_headP5_w1 = None
self.yolo_headP5_w2 = None
self.yolo_headP5_b1 = None
self.yolo_headP5_b2 = None
#upsample
self.upsample_w=None
self.upsample_b=Nonedef forward(self,x):
feat1,feat2=self.backbone.forward(x)
P5=FusedBasicConv(feat2,self.conv_forP5_w,self.conv_forP5_b,s=1,p=0)#K=1
#out0
out0=FusedBasicConv(P5,self.yolo_headP5_w1,self.yolo_headP5_b1,s=1)
out0=F.conv2d(input=out0,weight=self.yolo_headP5_w2,bias=self.yolo_headP5_b2,stride=1,padding=0)
#P5_Upsample
P5_Upsample=FusedBasicConv(P5,self.upsample_w,self.upsample_b,s=1,p=0)#K=1
P5_Upsample=F.upsample(input=P5_Upsample,scale_factor=2,mode='nearest')
#P4
P4=torch.cat([P5_Upsample,feat1],dim=1)
#out1
out1=FusedBasicConv(P4,self.yolo_headP4_w1,self.yolo_headP4_b1,s=1)
out1=F.conv2d(input=out1,weight=self.yolo_headP4_w2,bias=self.yolo_headP4_b2,stride=1,padding=0)
#
return out0,out1def load_weight(self,dir):
self.backbone.load_weight(dir)
#conv_forP5
self.conv_forP5_w=torch.from_numpy(np.fromfile(dir+"\\conv_forP5\\w.bin",dtype=np.float32)).view(256,512,1,1)
self.conv_forP5_b=torch.from_numpy(np.fromfile(dir+"\\conv_forP5\\b.bin",dtype=np.float32))
#upsample
self.upsample_w=torch.from_numpy(np.fromfile(dir+"\\upsample\\w.bin",dtype=np.float32)).view(128,256,1,1)
self.upsample_b=torch.from_numpy(np.fromfile(dir+"\\upsample\\b.bin",dtype=np.float32))
#head4
self.yolo_headP4_w1 = torch.from_numpy(np.fromfile(dir + "\\yolo_headP4\\w1.bin", dtype=np.float32)).view(256,384,3,3)
self.yolo_headP4_b1 = torch.from_numpy(np.fromfile(dir + "\\yolo_headP4\\b1.bin", dtype=np.float32))
self.yolo_headP4_w2 = torch.from_numpy(np.fromfile(dir + "\\yolo_headP4\\w2.bin", dtype=np.float32)).view(75,256,1,1)
self.yolo_headP4_b2 = torch.from_numpy(np.fromfile(dir + "\\yolo_headP4\\b2.bin", dtype=np.float32))
#head5
self.yolo_headP5_w1 = torch.from_numpy(np.fromfile(dir + "\\yolo_headP5\\w1.bin", dtype=np.float32)).view(512,256,3,3)
self.yolo_headP5_b1 = torch.from_numpy(np.fromfile(dir + "\\yolo_headP5\\b1.bin", dtype=np.float32))
self.yolo_headP5_w2 = torch.from_numpy(np.fromfile(dir + "\\yolo_headP5\\w2.bin", dtype=np.float32)).view(75,512,1,1)
self.yolo_headP5_b2 = torch.from_numpy(np.fromfile(dir + "\\yolo_headP5\\b2.bin", dtype=np.float32))#############################################################################
from yolo import *def backbone_test():
x=torch.randn(1,3,416,416)
yolo=YoloBody(anchors_mask=[[3,4,5],[1,2,3]],num_classes=20,phi=0,pretrained=False)
yolo.load_state_dict(torch.load("yolov4_tiny_weights_voc.pth"))
yolo.eval()
mybackbone=MyCSPdarknet53_tiny()
mybackbone.load_weight("folded_weights")
#
f11,f12=mybackbone.forward(x)
f21,f22=yolo.backbone.forward(x)
print(torch.max(torch.abs(f11-f21)))
print(torch.max(torch.abs(f12-f22)))
x.numpy().tofile("x.bin")
f11.numpy().tofile("feat1.bin")
f12.numpy().tofile("feat2.bin")def yolo_test():
#输入
x=torch.randn(10,3,416,416)
#baseline
yolo=YoloBody(anchors_mask=[[3,4,5], [1,2,3]],num_classes=20,phi=0,pretrained=False)
yolo.load_state_dict(torch.load("yolov4_tiny_weights_voc.pth"))
yolo.eval()
#ours
myyolo=MyYolo()
myyolo.load_weight("folded_weights")
#test
o1,o2=myyolo.forward(x)
r1,r2=yolo.forward(x)
#compare
print(torch.max(torch.abs(r1-o1)))
print(torch.max(torch.abs(r2-o2)))import os
def BasicConvTest(dir,h,w,k,s,p,c,n,i):
weight=torch.from_numpy(np.fromfile(dir+"\\w.bin",dtype=np.float32)).view(n,c,k,k)
bias=torch.from_numpy(np.fromfile(dir+"\\b.bin",dtype=np.float32))
x=torch.randn(1,c,h,w)
out=FusedBasicConv(x=x,w=weight,b=bias,s=s,p=p)
if not os.path.exists("BasicConv{}".format(i)):
os.mkdir("BasicConv{}".format(i))
weight.numpy().tofile("BasicConv{}\\w.bin".format(i))
bias.numpy().tofile("BasicConv{}\\b.bin".format(i))
x.numpy().tofile("BasicConv{}\\x.bin".format(i))
out.numpy().tofile("BasicConv{}\\out.bin".format(i))def ResBlockTest(dir,h,w,c,n,i):
w1=torch.from_numpy(np.fromfile(dir+"\\w1.bin",dtype=np.float32)).view(n,c,3,3)
b1=torch.from_numpy(np.fromfile(dir+"\\b1.bin",dtype=np.float32))
w2=torch.from_numpy(np.fromfile(dir+"\\w2.bin",dtype=np.float32)).view(n//2,n//2,3,3)
b2=torch.from_numpy(np.fromfile(dir+"\\b2.bin",dtype=np.float32))
w3=torch.from_numpy(np.fromfile(dir+"\\w3.bin",dtype=np.float32)).view(n//2,n//2,3,3)
b3=torch.from_numpy(np.fromfile(dir+"\\b3.bin",dtype=np.float32))
w4=torch.from_numpy(np.fromfile(dir+"\\w4.bin",dtype=np.float32)).view(n,n,1,1)
b4=torch.from_numpy(np.fromfile(dir+"\\b4.bin",dtype=np.float32))
x=torch.randn(1,c,h,w)
#创建保存的文件夹
dir="ResBlock{}".format(i)
if not os.path.exists(dir):
os.mkdir(dir)
y,feat=FusedResBlock(x,n=n,c=c,w1=w1,w2=w2,w3=w3,w4=w4,b1=b1,b2=b2,b3=b3,b4=b4)
#保存
x.numpy().tofile(dir+"\\x.bin")
y.numpy().tofile(dir+"\\y.bin")
feat.numpy().tofile(dir+"\\feat.bin")
w1.numpy().tofile(dir+"\\w1.bin")
b1.numpy().tofile(dir+"\\b1.bin")
w2.numpy().tofile(dir+"\\w2.bin")
b2.numpy().tofile(dir+"\\b2.bin")
w3.numpy().tofile(dir+"\\w3.bin")
b3.numpy().tofile(dir+"\\b3.bin")
w4.numpy().tofile(dir+"\\w4.bin")
b4.numpy().tofile(dir+"\\b4.bin")if __name__=="__main__":
BasicConvTest("folded_weights\\BasicConv1",416,416,3,2,1,3,32,1)
BasicConvTest("folded_weights\\BasicConv2",208,208,3,2,1,32,64,2)
BasicConvTest("folded_weights\\BasicConv3",13,13,3,1,1,512,512,3)
ResBlockTest("folded_weights\\ResBlock1",104,104,64,64,1)
ResBlockTest("folded_weights\\ResBlock2",52,52,128,128,2)
ResBlockTest("folded_weights\\ResBlock3",26,26,256,256,3)
backbone_test()
yolo_test()
注:该代码所使用的权重已经经过BN融合操作
效果演示 【python|Yolo4-Tiny代码解读】
文章图片
文章图片
工程链接:
https://gitee.com/jmqian1009/yolo4-tiny-test
推荐阅读
- FPGA|基于FPGA的MobileNet V2卷积神经网络加速器
- 目标检测|目标检测笔记(四)(YOLO-V4-Tiny 源码训练、测试、验证详细步骤)
- 深度神经网络|动手学深度学习(六、卷积神经网络)
- 人工智能算法|基于yolov4-tiny-pytorch轻量级框架的目标检测
- 动手学深度学习(pytorch|动手学深度学习(四十一)——深度循环神经网络(Deep-RNN))
- 动手学深度学习(pytorch|动手学深度学习(四)——用numpy和torch实现单层神经网络对比)
- 动手学深度学习(pytorch|动手学深度学习(二十九)——SSD目标检测算法理论到实践)
- 深度学习|深度学习典型应用之超分重建
- 算法|哈工大算法设计与分析总结