基于Redis分布式BitMap的应用
一、序言
在实际开发中常常遇到如下需求:判断当前元素是否存在于已知的集合中,将已知集合中的元素维护一个HashSet
,使用时只需耗时O(1)
的时间复杂度便可判断出结果,Java内部或者Redis均提供相应的数据结构。使用此种方式除了占用内存空间外,几乎没有其它缺点。
当数据量达到亿级别时,内存空间的占用显著表现出来,BitMap
便是解决此类问题的一种途径。
二、BitMap结构
1、内存消耗分析
Redis BitMap能够存储的数据范围为[0,2^32-1]
,超过Integer.MAX_VALUE
上界值。
为了简化讨论,假设讨论的集合元素的范围为[0,Integer.MAX_VALUE]
,可以是其中的任何一个数。
使用HashSet
数据结构占用内存空间仅与集合中的元素数量(N)相关。当集合中元素数量为N时,所需的内存空间大概为N*4/1024/1024
MB,1亿
条数据约占内存空间381MB
。
基于Redis的BitMap所占用的空间大小不与集合中元素数量相关,与集合中元素的最大值直接相关,因此BitMap所占用的内存空间范围为[N / 8 / 1024 / 1024,Integer.MAX_VALUE / 8 / 1024 / 1024]
。
// 测试1亿、5亿、10亿、Integer.MAX_VALUE
List items = Arrays.asList(100000000, 500000000, 1000000000, Integer.MAX_VALUE);
for (Integer item : items) {
int size = item / 8 / 1024 / 1024;
System.out.printf("如果集合中最大值为%-10s,则所占用的内存空间为%3sMB%n",item, size);
}
这里给出了一组测试参考数据
如果集合中最大值为100000000 ,则所占用的内存空间为 11MB
如果集合中最大值为500000000 ,则所占用的内存空间为 59MB
如果集合中最大值为1000000000,则所占用的内存空间为119MB
如果集合中最大值为2147483647,则所占用的内存空间为255MB
当集合中数据增长到
10亿
条时,使用BItMap最大占用内存约为255MB
,而使用HashSet增长到3.8GB
。2、命令行操作BitMap 使用Redis命令行可直接操作BitMap,将
offset
位置的值标注为1,则表示当前数据存在。默认情况下未标注的位置值为0。# 默认位不赋值为0,当数据存在于集合中,将对应位赋值为1
SETBIT key offset value
# 查看对应位数据是否存在(1表示存在,0表示不存在)
GETBIT key offset
3、客户端操作BitMap 这里提供一个SpringBoot生态的
RedisUtils
工具类,内部封装操作Redis BitMap的工具方法。// 将当前位置标记为true
RedisUtils.setBit(BIT_MAP_KEY, orderId, true);
// 获取指定位置的值(对应数值是否存在)
RedisUtils.getBit(BIT_MAP_KEY, orderId)
上述工具类的依赖如下,如果找不到Jar包,请直接使用Maven原始仓库源,阿里云尚未同步完成。
xin.altitude.cms
ucode-cms-common
1.4.3
4、时间与空间复杂度 BitMap的存储与取值时间复杂度为
O(1)
,根据数值可直接映射下标。【基于Redis分布式BitMap的应用】BitMap占用内存空间复杂度为
O(n)
,与集合中元素的最大值正相关,不是集合中元素的数量。三、BitMap应用
1、回避缓存穿透 缓存穿透是指当前请求的数据在缓存中不存在,需要访问数据库获取数据(数据库中也不存在请求的数据)。缓存穿透给数据库带来了压力,恶意缓存穿透甚至能造成数据库宕机。
使用BitMap动态维护一个集合,当访问数据库前,先查询数据的主键是否存在集合中,以此作为是否访问数据库的依据。
BitMap新增数据或者移除数据属于轻量级操作,检查操作的准确度依赖于动态集合维护的闭环的完整性。比如向数据库增加数据时需要向BitMap中添加数据,从数据库中删除数据需要从BitMap中移除数据。如果要求严格的检查可靠性,则可以单独维护一个分布式定时任务,定期更新BitMap数据。
2、与布隆过滤器的区别 布隆过滤器与BitMap有相似的应用场景,但也有一定的区别。给定一个数,BitMap能准确知道是否存在于已知集合中;布隆过滤器能准确判断是否不在集合中,却不能肯定存在于集合中。
BitMap增加或者移除数据时间复杂度为O(1),方便快捷。布隆过滤器新建容易,剔除数据操作比较繁琐。
在一些需要精确判断的场景,优先选择BitMap,比如判断手机号是否已经注册。
四、小结
Redis BitMap不是一种新的数据结构,是利用字符串类型做的一层封装,看起来像一种新型数据结构。BitMap不像一种技术,更像是算法,在时间复杂度和空间复杂度之间寻找平衡点。
BitMap其它应用场景比如签到打卡,统计在线人数等等。
推荐阅读
- 好家伙,分布式配置中心这种组件真的是神器
- 基于多图卷积神经网络的车站级共享单车小时客流量预测(附下载链接)
- 大数据|基于图卷积堆叠的双向单向LSTM神经网络的地铁客流预测
- 人人都能看懂系列:《分布式系统改造方案——老旧系统改造篇》
- 分布式文件上传导致服务假死了()
- 资讯|Snowflake8亿美元收购Streamlit,联手构建基于数据的应用程序
- 别再用 Redis List 实现消息队列了,Stream 专为队列而生
- [N32G457] 基于RT-Thread和N32G457的简易便捷式可调电压源
- 语音顶会 ICASSP 2022 成果分享(基于时频感知域模型的单通道语音增强算法)
- 深入浅出特征工程|深入浅出特征工程 -- 基于 OpenMLDB 的实践指南(下)