Java数据结构之线段树详解

目录

  • 介绍
  • 代码实现
  • 线段树构建
  • 区间查询
  • 更新
  • 总结

介绍 线段树(又名区间树)也是一种二叉树,每个节点的值等于左右孩子节点值的和,线段树示例图如下
Java数据结构之线段树详解
文章图片

以求和为例,根节点表示区间0-5的和,左孩子表示区间0-2的和,右孩子表示区间3-5的和,依次类推。

代码实现
/** * 使用数组实现线段树 */public class SegmentTree {private Node[] data; private int size; private Merger merger; public SegmentTree(E[] source, Merger merger) {this.merger = merger; this.size = source.length; this.data = https://www.it610.com/article/new Node[size * 4]; buildTree(0, source, 0, size - 1); }public E search(int queryLeft, int queryRight) {if (queryLeft < 0 || queryLeft> size || queryRight < 0 || queryRight > size|| queryLeft > queryRight) {throw new IllegalArgumentException("index is illegal"); }return search(0, queryLeft, queryRight); }/*** 查询区间queryLeft-queryRight的值*/private E search(int treeIndex, int queryLeft, int queryRight) {Node treeNode = data[treeIndex]; int left = treeNode.left; int right = treeNode.right; if (left == queryLeft && right == queryRight) {return elementData(treeIndex); }int leftTreeIndex = leftChild(treeIndex); int rightTreeIndex = rightChild(treeIndex); int middle = left + ((right - left) >> 1); if (queryLeft > middle) {return search(rightTreeIndex, queryLeft, queryRight); } else if (queryRight <= middle) {return search(leftTreeIndex, queryLeft, queryRight); }E leftEle = search(leftTreeIndex, queryLeft, middle); E rightEle = search(rightTreeIndex, middle + 1, queryRight); return merger.merge(leftEle, rightEle); }public void update(int index, E e) {update(0, index, e); }/*** 更新索引为index的值为e*/private void update(int treeIndex, int index, E e) {Node treeNode = data[treeIndex]; int left = treeNode.left; int right = treeNode.right; if (left == right) {treeNode.data = https://www.it610.com/article/e; return; }int leftTreeIndex = leftChild(treeIndex); int rightTreeIndex = rightChild(treeIndex); int middle = left + ((right - left)>> 1); if (index > middle) {update(rightTreeIndex, index, e); } else {update(leftTreeIndex, index, e); }treeNode.data = https://www.it610.com/article/merger.merge(elementData(leftTreeIndex), elementData(rightTreeIndex)); }private void buildTree(int treeIndex, E[] source, int left, int right) {if (left == right) {data[treeIndex] = new Node<>(source[left], left, right); return; }int leftTreeIndex = leftChild(treeIndex); int rightTreeIndex = rightChild(treeIndex); int middle = left + ((right - left) >> 1); buildTree(leftTreeIndex, source, left, middle); buildTree(rightTreeIndex, source, middle + 1, right); E treeData = https://www.it610.com/article/merger.merge(elementData(leftTreeIndex), elementData(rightTreeIndex)); data[treeIndex] = new Node<>(treeData, left, right); }@Overridepublic String toString() {return Arrays.toString(data); }private E elementData(int index) {return (E) data[index].data; }private int leftChild(int index) {return index * 2 + 1; }private int rightChild(int index) {return index * 2 + 2; }private static class Node {E data; int left; int right; Node(E data, int left, int right) {this.data = https://www.it610.com/article/data; this.left = left; this.right = right; }@Overridepublic String toString() {return String.valueOf(data); }}public interface Merger {E merge(E e1, E e2); }}

我们以LeetCode上的一个问题来分析线段树的构建,查询和更新,LeetCode307问题如下:
给定一个整数数组,查询索引区间[i,j]的元素的总和。

线段树构建
private void buildTree(int treeIndex, E[] source, int left, int right) {if (left == right) {data[treeIndex] = new Node<>(source[left], left, right); return; }int leftTreeIndex = leftChild(treeIndex); int rightTreeIndex = rightChild(treeIndex); int middle = left + ((right - left) >> 1); buildTree(leftTreeIndex, source, left, middle); buildTree(rightTreeIndex, source, middle + 1, right); E treeData = https://www.it610.com/article/merger.merge(elementData(leftTreeIndex), elementData(rightTreeIndex)); data[treeIndex] = new Node<>(treeData, left, right); }

测试代码
public class Main {public static void main(String[] args) {Integer[] nums = {-2, 0, 3, -5, 2, -1}; SegmentTree segmentTree = new SegmentTree<>(nums, Integer::sum); System.out.println(segmentTree); }}

最后构造出的线段树如下,前面为元素值,括号中为包含的区间。
Java数据结构之线段树详解
文章图片

递归构造过程为
  • 当左指针和右指针相等时,表示为叶子节点
  • 将左孩子和右孩子值相加,构造当前节点,依次类推

区间查询
/*** 查询区间queryLeft-queryRight的值*/private E search(int treeIndex, int queryLeft, int queryRight) {Node treeNode = data[treeIndex]; int left = treeNode.left; int right = treeNode.right; if (left == queryLeft && right == queryRight) {return elementData(treeIndex); }int leftTreeIndex = leftChild(treeIndex); int rightTreeIndex = rightChild(treeIndex); int middle = left + ((right - left) >> 1); if (queryLeft > middle) {return search(rightTreeIndex, queryLeft, queryRight); } else if (queryRight <= middle) {return search(leftTreeIndex, queryLeft, queryRight); }E leftEle = search(leftTreeIndex, queryLeft, middle); E rightEle = search(rightTreeIndex, middle + 1, queryRight); return merger.merge(leftEle, rightEle); }

查询区间2-5的和
public class Main {public static void main(String[] args) {Integer[] nums = {-2, 0, 3, -5, 2, -1}; SegmentTree segmentTree = new SegmentTree<>(nums, Integer::sum); System.out.println(segmentTree); System.out.println(segmentTree.search(2, 5)); // -1}}

查询过程为
  • 待查询的区间和当前节点的区间相等,返回当前节点值
  • 待查询左区间大于中间区间值,查询右孩子
  • 待查询右区间小于中间区间值,查询左孩子
  • 待查询左区间在左孩子,右区间在右孩子,两边查询结果相加

更新
/*** 更新索引为index的值为e*/private void update(int treeIndex, int index, E e) {Node treeNode = data[treeIndex]; int left = treeNode.left; int right = treeNode.right; if (left == right) {treeNode.data = https://www.it610.com/article/e; return; }int leftTreeIndex = leftChild(treeIndex); int rightTreeIndex = rightChild(treeIndex); int middle = left + ((right - left)>> 1); if (index > middle) {update(rightTreeIndex, index, e); } else {update(leftTreeIndex, index, e); }treeNode.data = https://www.it610.com/article/merger.merge(elementData(leftTreeIndex), elementData(rightTreeIndex)); }

更新只影响元素值,不影响元素区间。
更新其实和构建的逻辑类似,找到待更新的实际索引,依次更新父节点的值。

总结 线段树可以很好地处理区间问题,如区间求和,求最大最小值等。
【Java数据结构之线段树详解】以上就是Java 数据结构之线段树详解的详细内容,更多关于Java 线段树的资料请关注脚本之家其它相关文章!

    推荐阅读