文章图片
索引的种类 众所周知,索引类似于字典的目录,可以提高查询的效率。
索引从物理上可以分为:聚集索引,非聚集索引
从逻辑上可以分为:普通索引,唯一索引,主键索引,联合索引,全文索引
索引优化策略
不要在索引列上进行运算或使用函数
在列上进行运算或使用函数会使索引失效,从而进行全表扫描。如下面例子在publish_time,id列上分别加上索引,publish_time为datetime类型,id为int类型
-- 全表扫描
select * from article where year(publish_time) < 2019
-- 走索引
select * from article where publish_time < '2019-01-01'
-- 全表扫描
select * from article where id+ 1 = 5
-- 走索引
select * from article where id = 4
小心隐式类型转换
假设id为varchar类型
-- 全表扫描
select * from article where id = 100
-- 走索引
select * from article where id = '100'
为什么呢?
select * from article where id = 100
-- 等价于
select * from article where CAST(id AS signed int) = 100
上一条规则说过,不要在索引列上使用函数,隐式类型转换在索引字段上做了函数操作,因此会全表扫描
那么如果id是int,执行下面这个语句是否会导致全表扫描呢?
select * from article where id = '100'
答案是会用到索引,我们来分析一下为什么会用到索引
我们先来做一个实验,看一下数据库中字符串和数字做比较的时候,是怎么转换的?
这里有个简单的方法执行select “10” > 9即可
如果结果是1,则是把字符串转成数字,然后进行比较
如果结果是0,则是把数字转成字符串(因为字符串比较是从高位到低位按照asciss码来逐位比较,“1”比“9”小,所以为0),然后进行比较
mysql> select "10" > 9;
+----------+
| "10" > 9 |
+----------+
|1 |
+----------+
结果为1表明当字符串和数字进行比较的时候,是把字符串转成数字
mysql> select "a" = 0;
+---------+
| "a" = 0 |
+---------+
|1 |
+---------+
1 row in set, 1 warning (0.00 sec)mysql> select "123abc" = 123;
+----------------+
| "123abc" = 123 |
+----------------+
|1 |
+----------------+
1 row in set, 1 warning (0.00 sec)mysql> select "123abc456" = 123;
+---------------------+
| "123abc456" = 123 |
+---------------------+
|1 |
+---------------------+
1 row in set, 1 warning (0.00 sec)
从实验结果中可以看到,当字符串不含有数字时,会转成0,否则转成字符串中第一段连续的数字
我们接着来分析上面的例子,为什么一会会用到索引,一会不会用到
-- id列上有索引,id为varchar,不会走索引
-- id是字符串时,数据库中的id都要转成数字,转成的值不确定(例如id='12ab'会被转成12,不可能从索引上找到12这个值的)
-- 所以得全表扫描
select * from article where id = 100-- id列上有索引,id为int,会走索引
-- id是int时,'100'会被转成数字100,所以能走索引
select * from article where id = '100'
前导模糊查询不会使用索引
-- 全表扫描
select * from article where author like '%李'
%李,%李%都会导致全表扫描,非前导模糊查询可以使用索引
-- 走索引
select * from article where author like '李%'
联合索引最左前缀原则
mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整
1.将区分度最高的字段放在最左边
当不需要考虑排序和分组时,将区分度最高的列放在前面通常是很好的。这时候索引的作用只是用于优化WHERE条件的查找
如果在a b列上建立联合索引,该如何建立,才能使查询效率最高
select count(distinct a) / count(*), count(distinct b) / count(*), count(*) from table
执行如下语句,假设3个输出依次为0.0001,0.373,16049,可以看到b列的选择性最高,因此将其作为联合索引的第一列,即建立(b, a)的联合索引
2.查询时=可以乱序
如果建立了联合索引(a, b)。例如下面的2个写法是等价的,因为MySQL会将查询的顺序优化成和联合索引的顺序一致
select * from table where a = '1' and b = '1'
select * from table where b = '1' and a = '1'
3.优化查询,避免出现filesort
select * from table where a = ? and b = ? order by c
最左前缀原则不仅用在查询中,还能用在排序中。MySQL中,有两种方式生成有序结果集:
- 通过有序索引顺序扫描直接返回有序数据
- Filesort排序,对返回的数据进行排序
所有不是通过索引直接返回排序结果的操作都是Filesort排序,也就是说进行了额外的排序操作。EXPLAIN分析查询时,Extra显示为Using filesort,当出现Using filesort时对性能损耗较大,所以要尽量避免Using filesort
对于如下sql
select * from table where a = ? and b = ? order by c
可以建立联合索引(a, b, c)
如果索引中有范围查找,那么索引有序性无法利用,如
select * from table where a > 10 order by b
索引(a,b)无法排序。
放几个例子
-- 使用了a列
where a = 3-- 使用了a b列
where a = 3 and b = 5-- 使用了a b c列
where a = 3 and c = 4 and b = 5
-- 没有使用索引
where b = 3-- 使用了a列
where a = 3 and c = 4-- 使用了a b列
where a = 3 and b > 10 and c = 7
-- 使用了a b 列
where a = 3 and b like 'xx%' and c = 7
union,or,in都能命中索引,建议使用in
select * from article where id = 1
union all
select * from article where id = 2
select * from article where id in (1 , 2)
新版MySQL的or可以命中索引
select * from article where id = 1 or id = 2
【MySQL|MySQL实战(索引优化策略有哪些())】效率从高到低为union,in,or。in和union的效率差别可以忽略不计,建议使用in
负向条件索引不会使用索引,建议用in
负向条件有:!=、<>、not in、not exists、not like 等
-- 全表扫描
select * from article where id != 1 and id != 2
知道id的所有取值范围,可以改为类似如下形式
-- 走索引
select * from article where id in (0, 3, 4)
建立覆盖索引
众所周知,表数据是放在一个聚集索引上的,而建立的索引为非聚集索引,非聚集索引的叶子节点存放索引键值,以及该索引键指向的主键。一般查找的过程是从非聚集索引上找到数据的主键,然后根据该主键到聚集索引上查找记录,这个过程称为回表,不清楚的看推荐阅读。
如有下面这个sql
select uid, login_time from user where username = ? and passwd = ?
可以建立(username, passwd, login_time)的联合索引,由于 login_time的值可以直接从索引中拿到,不用再回表查询,提高了查询效率
经常更改,区分度不高的列上不宜加索引
更新会变更 B+ 树,更新频繁的字段建立索引会大大降低数据库性能。
“性别”这种区分度不大的属性,建立索引是没有什么意义的,不能有效过滤数据,性能与全表扫描类似。
一般区分度在80%以上的时候就可以建立索引,区分度可以使用 count(distinct(列名))/count(*) 来计算
明确知道只会返回一条记录,可以加limit1
当查询确定只有一条记录时,可以加liimit1,让MySQL停止游标移动,提高查询效率
select uid from user where username = ? and passwd = ?
可改为
select uid from user where username = ? and passwd = ? limit 1
对文本建立前缀索引
用邮箱登录是一个常见的问题,如果对email整个字段建立索引,会让索引变得大且慢
select username from user where email='xxx';
这时我们可以索引开始的部分字符,这样可以大大节约索引空间,从而提高索引效率,但这样也会降低索引的区分度。索引的区分度是指,不重复的索引值和数据表的记录总数的比值。索引的区分度越高则查询效率越高,因为区分度高的索引可以让MySQL在查找时过滤掉更多的行。
因此我们选择足够长的前缀保证较高的区分度,同时又不能太长(以便节约空间)
可以进行如下实验
select count(distinct left(email, 5)) / count(*) as col5,
count(distinct left(email, 6)) / count(*) as col6,
count(distinct left(email, 7)) / count(*) as col7
from user
假设输出依次为0.0305,0.0309,0.0310
查询显示当前缀长度达到7的时候,再增加前缀长度,区分度提升的幅度已经很小了,因此创建email(7)的前缀索引即可
需要注意的一点是,前缀索引不能使用覆盖索引
建立索引的列不为NULL
只要列中包含有 NULL 值都将不会被包含在索引中,复合索引中只要有一列含有 NULL值,那么这一列对于此复合索引就是无效的。
因此,在数据库设计时,除非有一个很特别的原因使用 NULL 值,不然尽量不要让字段的默认值为 NULL。
参考博客 分页查询优化
[0]https://juejin.im/post/5bf229c6518825651713cdb0
[1]https://dbaplus.cn/news-155-1531-1.html
[2]https://blog.csdn.net/qq_21987433/article/details/79753551
[3]https://mp.weixin.qq.com/s?__biz=MzA5NDg3MjAwMQ==&mid=2457102122&idx=1&sn=4b7ab16c24bedb0024dc5ec03bb8c223&chksm=87c8cf84b0bf4692cb27fc0db6511f7896175594bbc86524e5f7d135df66b5f76ebf10e69df8&mpshare=1&scene=1&srcid=0527sVH9YU6CSlck1SibCrJm#rd
分页查询优化
[4]https://www.cnblogs.com/songwenjie/p/9563763.html
推荐阅读
- MySQL|MySQL实战(用explain分析sql执行性能)
- Python学习笔记|Python连接MySQL数据库并读取显示数据
- Java基础的查漏补缺|仿生Power Designer会梦到Mysql电子羊吗?(Power Designer教程)
- MySql 常用语法
- 低代码开发|驰骋BPM低代码快速开发平台之—.NET版准备工作篇
- JavaWeb实战|IDEA+Java+JSP+Mysql+Tomcat实现Web商品信息管理系统
- JavaWeb实战|IDEA+Java+JSP+Mysql+Tomcat实现Web学生宿舍信息管理系统
- JavaWeb实战|IDEA+Java+JSP+Mysql+Tomcat实现Web宠物信息管理系统
- JavaWeb实战|IDEA+Java+SSM+JSP+Mysql+Tomcat实现Web药品信息管理系统