r生成新的dataframe_R 语言的Dataframe常用操作
上节我们简单介绍了Dataframe的定义,这节我们具体来看一下Dataframe的操作
首先,数据框的创建函数为 data.frame( ),参考R语言的帮助文档,我们来了解一下data.frame( )的具体用法:
Usage
data.frame(..., row.names = NULL, check.rows = FALSE,
check.names = TRUE, fix.empty.names = TRUE,
stringsAsFactors = default.stringsAsFactors())
default.stringsAsFactors()
Arguments
... :these arguments are of either the form value or tag = value. Component names are created based on the tag (if present) or the deparsed argument itself.
row.names :NULL or a single integer or character string specifying a column to be used as row names, or a character or integer vector giving the row names for the data frame.
当然,后面还有很多参数的具体用法,在此不做一一赘述,主要用到的就是前两个。首先,“...”代表了表格数据,就是要构成数据框的数据主体,row.names( )为要构成数据框的行名,那么既然数据框相当于R语言的一个表格,应该既有行名也有列名才对,那么列名又是如何给出的呢?我们知道,很多的数据处理软件以及算法是以数据的列为单位进行的,之前我们构建矩阵的时候,默认也是按列填充(byrow=FALSE),而列名在创建数据框开始我们就已经确定好了的。详见下面代码:
我想要创建一个名为“mydataframe”的数据框,首先确定数据框里面的列有哪些,然后调用函数data.frame( )函数
> C1
> C2
> C3
> C4
> C5
> mydataframe
> mydataframe
C1 C2 C3 C4 C5
R1 1 5 9 13 17
R2 2 6 10 14 18
R3 3 7 11 15 19
R4 4 8 12 16 20
由此可见,数据框是把现有的列拼接成一个表格的一种数据结构,细心的朋友会发现,这个数据框怎么跟上节我们讲过的矩阵长得那么一样!!!再回顾一下上节的矩阵创建:
> mydata
> cnames
> rnames
> myarray
> myarray
C1 C2 C3 C4 C5
R1 1 5 9 13 17
R2 2 6 10 14 18
R3 3 7 11 15 19
R4 4 8 12 16 20
确实,从长相上来说分不出差别,但是矩阵里面的元素必须一致,而数据框可以是各种类型数据的集合。这种集合不是无条件乱七八糟的集合,而是以列为单位,不同列的元素类型可以不同,但是同一列的元素类型必须一致。因此,矩阵可以看做特殊的数据框类型那么这么做有什么意义呢?在数据统计中,我们需要有各种各样类型的数据,就拿简单的成绩单来说,就包含了“姓名”,“学号”,“科目”等字符型元素,也包括“分数”等数值型元素,还有“是否通过”等布尔型元素,因此,从广泛意义上来说,dataframe更具有普适性,矩阵多用在数学计算中。说归说,我们来实际创建一个数据框,然后再演示一下它的具体操作:
> names
> StudentID
> subjects
> scores
> Result
> Result
StudentID names subjects scores
1 2014 小明 英语 87
2 2015 小红 英语 98
3 2016 小兰 英语 93
由上可见,当没有给数据框指定行名的时候,系统会默认从1开始给每行一个行号,这跟Excel表格有点类似。 还是同往常一样,我们先学习dataframe数据类型的基本操作
数据框元素的访问:既然矩阵是特殊的数据框,那么矩阵元素的访问方式应该也同样适用于dataframe吗?不是这样,我们知道,数据框是以行或者列为单位(行列可以转置),因此访问元素时只能整行或者整列访问。即dataframe[1,](访问第一行),dataframe[,1](访问第一列)采用这种方式访问列时,返回值是按行排列的形式。访问列同样也可以直接使用dataframe(1)访问第一列,或者dataframe(列名)来访问指定的列。也可以连续访问若干列,详见代码:
> Result[1,] #访问第一行
StudentID names subjects scores
1 2014 小明 英语 87
> Result[,1] #访问第一列
[1] 2014 2015 2016
Levels: 2014 2015 2016
> Result[1] #访问第一列
StudentID
1 2014
2 2015
3 2016
> Result["names"] #访问指定标号的列
names
1 小明
2 小红
3 小兰
> Result[1:3,]#访问1-3行
StudentID names subjects scores
1 2014 小明 英语 87
2 2015 小红 英语 98
3 2016 小兰 英语 93
> Result[1:3]#访问1-3列
StudentID names subjects
1 2014 小明 英语
2 2015 小红 英语
3 2016 小兰 英语> Result[c(1,3),]#只访问1,3行,注意写法 c( )
StudentID names subjects scores
1 2014 小明 英语 87
3 2016 小兰 英语 93
> Result[c(1,4)]#只访问1,4列,注意写法 c( )
StudentID scores
1 2014 87
2 2015 98
3 2016 93
> Result[c("names","scores")]#只访问names和scores列,注意写法 c( )
names scores
【r生成新的dataframe_R 语言的Dataframe常用操作】1 小明 87
2 小红 98
3 小兰 93
由上可得:对数据框操作,必须以向量为单位,使用c( ) or list( ),通过上述了解,我们发现,普通的访问必须带着行名和列名,这有的时候给我们带来不必要的麻烦,比如我要计算成绩平均值,带上列名Score会给我们带来一些困惑,于是有哪些方法可以在访问数据库元素时不带着行名或者列名呢?
方法一:用attach和detach函数,比如要打印所有names,那么可以写成:
> attach(Result)
The following objects are masked _by_ .GlobalEnv:
names, scores, StudentID, subjects
The following objects are masked from Result (pos = 3):
names, scores, StudentID, subjects
> name
> score
> detach(Result)
> name
[1] "小明" "小红" "小兰"
> score
[1] 87 98 93
> mean(score)
[1] 92.66667
方法二:用with函数
> with(Result,{score
> score
[1] 87 98 93
上面谈到了dataframe的创建和读取,如果我需要添加或者删除某一列该怎么办呢?
> Result$age
> Result
StudentID names subjects scores age
1 2014 小明 英语 87 12
2 2015 小红 英语 98 14
3 2016 小兰 英语 93 13
> Result2
> Result2
StudentID subjects scores age
1 2014 英语 87 12
2 2015 英语 98 14
3 2016 英语 93 13
如果我需要查询成绩等于98的学生的信息该怎么办呢?
> Result[which(Result$scores==98),]
StudentID names subjects scores age
2 2015 小红 英语 98 14
上面说过了,矩阵和数据框也是两种不同的数据类型,我们知道数据类型之间可以互相转换,用is.***( )可以判断某个变量是否为***类型,用as.***( )则将某个变量转换为***类型。那么相应的,矩阵转换为数据框类型则应为:
> myarray
C1 C2 C3 C4 C5
R1 1 5 9 13 17
R2 2 6 10 14 18
R3 3 7 11 15 19
R4 4 8 12 16 20
> myarrayframe
> myarrayframe
C1 C2 C3 C4 C5
R1 1 5 9 13 17
R2 2 6 10 14 18
R3 3 7 11 15 19
R4 4 8 12 16 20
> is.data.frame(myarray)
[1] FALSE
> is.data.frame(myarrayframe)
[1] TRUE
跟矩阵matrix操作一样,数据框也有rbind和cbind函数,用法大致相同,有兴趣的朋友可以简单联系一下,这里不再赘述。
最后,我们来谈一下数据框数据处理操作:
上面我们讲到,利用dataframe[ 列号 ]或者dataframe[ 列值 ]可以读取数据框的某一列,返回值仍为数据框类型,但是这部分数据不方便直接利用我们之前讲过的求和,求平均值等方法进行计算分析,因为读取的数据带有“行名/列名”,这个为字符型变量。有的人会问,我在创建数据框的时候,不加行名和列名不就行了?第一,在创建数据框的时候,会默认给你分配行名或者列名,第二,就算不分配行名或者列名,那数据框创建起来还有什么意义?
> mydataframe
C1 C2 C3 C4 C5
R1 1 5 9 13 17
R2 2 6 10 14 18
R3 3 7 11 15 19
R4 4 8 12 16 20
> mydataframe["C4"]
C4
R1 13
R2 14
R3 15
R4 16
> mean(mydataframe["C4"])
[1] NA
Warning message:
In mean.default(mydataframe["C4"]) : 参数不是数值也不是逻辑值:回覆NA
> is.data.frame(mydataframe["C4"])
[1] TRUE
方法一:将数据框格式重新转化为矩阵格式,然后按照矩阵索引的方式来找寻要处理的数据组,利用矩阵或者向量中相关函数来进行一定的数据处理。
> myarray2
> is.matrix(myarray2)
[1] TRUE
> myarray2
C1 C2 C3 C4 C5
R1 1 5 9 13 17
R2 2 6 10 14 18
R3 3 7 11 15 19
R4 4 8 12 16 20
> x
> x
R1 R2 R3 R4
9 10 11 12
> is.vector(x) #查看x是否为向量类型
[1] TRUE
> mean(x)
[1] 10.5
> sum(x)
[1] 42
方法二:在读取数据框列的时候换用另外一种方法,dataframe$(行名或者列名),返回值是vector类型
> c
> c
[1] 9 10 11 12
> is.vector(c)
[1] TRUE
> mean(c)
[1] 10.5
> sum(c)
[1] 42
同时,也可以利用dataframe$(新的列名)
> mydataframe$sum
> mydataframe$mean
> mydataframe
C1 C2 C3 C4 C5 sum mean
R1 1 5 9 13 17 14 7
R2 2 6 10 14 18 16 8
R3 3 7 11 15 19 18 9
R4 4 8 12 16 20 20 10
最推崇的是下一种方法,直接利用transform函数组建新的数据框,具体用法如下:
> x1
> x2
> mydataframe2
> mydataframe2
C1 C2 C3 C4 C5 sum mean sum2 mean2
R1 1 5 9 13 17 14 7 10 5
R2 2 6 10 14 18 16 8 12 6
R3 3 7 11 15 19 18 9 14 7
R4 4 8 12 16 20 20 10 16 8
推荐阅读
- dataframe|dataframe python写入数据_Pandas 学习 第9篇(DataFrame - 数据的输入输出)
- python中dataframe转数据类型_Pandas|python中dataframe转数据类型_Pandas 学习 第4篇(DataFrame -(创建、属性、操作列、类型转换)...)
- 深度学习|从0开始的深度学习——【tensorflow】如何生成一个基本张量
- Python基础|【Pandas】Pandas中的DataFrame数据结构的部分用法
- TDD(测试驱动开发)
- 电商平台基于销售属性生成SKU的设计
- 基于QT设计一个春联自动生成器
- tomcat|jenkins定时执行jmeter脚本文件发送邮箱生成测试报告
- Jeecgboot-Vue3|Jeecgboot-Vue3 v1.0.0 版本正式发布,基于代码生成器的企业级低代码平台
- 用 Go 语言造了一个全新的 kv 存储引擎