FCN论文复现|resnet50代码前向对齐

主要思路:先导入预训练模型,然后导出权重参数和npy输出,然后再将torch的代码对应的改写成paddle的代码,导入权重参数,输出npy文件,最后对比着两个npy文件即可
完整项目链接
1.安装pycharm 【FCN论文复现|resnet50代码前向对齐】破解版的,直接安装就好
2.安装anconda 安装链接
3.安装paddlepaddle和torch

conda create -n resnet50 python=3.7 conda activate resnet50 conda install paddlepaddle --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/ pip install torch torchvision -i https://pypi.tuna.tsinghua.edu.cn/simple pip install torchvision

效果图:
FCN论文复现|resnet50代码前向对齐
文章图片

4.resnet50_torch.py代码讲解 FCN论文复现|resnet50代码前向对齐
文章图片

先导入预训练模型,然后开启预测模式(为了后面导出权重做准备)
FCN论文复现|resnet50代码前向对齐
文章图片

先定义了一个空列表,然后通过named_modules函数(获取网络结构)遍历所有的层,如果是线性层的话就会添加到这个列表中(在resnet中只有最后一层fc层是线性层,所以这段代码的意思就是先把resnet网络中的最后一层提取出来)
named_modules()函数和named_children( ):
从定义上讲:
named_children( ):返回包含子模块的迭代器,同时产生模块的名称以及模块本身。

named_modules( ):返回网络中所有模块的迭代器,同时产生模块的名称以及模块本身。

测试一下:
import torch import torch.nn as nn class TestModule(nn.Module): def __init__(self): super(TestModule,self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(16,32,3,1), nn.ReLU(inplace=True) ) self.layer2 = nn.Sequential( nn.Linear(32,10) ) def forward(self,x): x = self.layer1(x) x = self.layer2(x) model = TestModule() for name, module in model.named_children(): print('children module:', name) for name, module in model.named_modules(): print('modules:', name)

>>out: children module: layer1 children module: layer2 modules: modules: layer1 modules: layer1.0 modules: layer1.1 modules: layer2 modules: layer2.0

可以看到named_children只输出了layer1和layer2两个子module,而named_modules输出了包括layer1和layer2下面所有的modolue。
所以可以利用named_modules()函数将网络结构打印出来,博主将结构打印到txt文件中以便查阅。FCN论文复现|resnet50代码前向对齐
文章图片

函数isinstance()可以判断一个变量的类型,既可以用在Python内置的数据类型如str、list、dict,也可以用在我们自定义的类,它们本质上都是数据类型。
FCN论文复现|resnet50代码前向对齐
文章图片

model.state_dict(): 这个函数是可以去获得模型的状态字典,这个字典是在定义后模型后自动生成的。

convert_param_dict(model_dict, trans_weights): 该函数是将torch中的状态字典转为paddle中的状态字典。

保存参数字典
FCN论文复现|resnet50代码前向对齐
文章图片

保存输出
FCN论文复现|resnet50代码前向对齐
文章图片

最后得到torch_resnet50.pkl和torch_resnet50.npy两个文件
至此就得到torch环境下的运行结果和paddle环境下的权重文件了,接下来就是要把torch的代码对应成paddle代码。
5.代码对齐 打开这个网站,使用浏览器的查找功能,对torch的API进行逐个比对
效果展示:
import paddle import paddle.nn as nnimport pickle import numpy as npdef conv3x3(in_planes, out_planes, stride = 1, groups = 1, dilation = 1): """3x3 convolution with padding""" return nn.Conv2D(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, dilation=dilation)def conv1x1(in_planes, out_planes, stride = 1): """1x1 convolution""" return nn.Conv2D(in_planes, out_planes, kernel_size=1, stride=stride)class BasicBlock(nn.Layer): expansion = 1def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2D if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError( "Dilation > 1 not supported in BasicBlock")self.conv1 = nn.Conv2D( inplanes, planes, 3, padding=1, stride=stride, bias_attr=False) self.bn1 = norm_layer(planes) self.relu = nn.ReLU() self.conv2 = nn.Conv2D(planes, planes, 3, padding=1, bias_attr=False) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stridedef forward(self, x): identity = xout = self.conv1(x) out = self.bn1(out) out = self.relu(out)out = self.conv2(out) out = self.bn2(out)if self.downsample is not None: identity = self.downsample(x)out += identity out = self.relu(out)return outclass BottleneckBlock(nn.Layer):expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(BottleneckBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2D width = int(planes * (base_width / 64.)) * groupsself.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU() self.downsample = downsample self.stride = stridedef forward(self, x): identity = xout = self.conv1(x) out = self.bn1(out) out = self.relu(out)out = self.conv2(out) out = self.bn2(out) out = self.relu(out)out = self.conv3(out) out = self.bn3(out)if self.downsample is not None: identity = self.downsample(x)out += identity out = self.relu(out)return outclass ResNet(nn.Layer): def __init__( self, block, layers, num_classes = 1000, zero_init_residual = False, groups = 1, width_per_group = 64, replace_stride_with_dilation = None, norm_layer = None ): super(ResNet, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2D self._norm_layer = norm_layerself.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_groupself.conv1 = nn.Conv2D(3, self.inplanes, kernel_size=7, stride=2, padding=3) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU() self.maxpool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool2D((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes)def _make_layer(self, block, planes, blocks, stride = 1, dilate = False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), )layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer))return nn.Sequential(*layers)def _forward_impl(self, x): # See note [TorchScript super()] x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x)x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x)x = self.avgpool(x) x = paddle.flatten(x, 1) x = self.fc(x)return xdef forward(self, x): return self._forward_impl(x)def _resnet(arch, block, layers,**kwargs): model = ResNet(block, layers,**kwargs) return modeldef resnet50(**kwargs): return _resnet('resnet50', BottleneckBlock, [3, 4, 6, 3])if __name__ == "__main__": dummy_input = [paddle.ones(shape=[3, 224, 224])] model = resnet50()with open('torch_resnet50.pkl', 'rb') as f: param2 = pickle.load(f) model.set_state_dict(param2) model.eval()output = model(paddle.to_tensor(dummy_input)) np.save('paddle_resnet50.npy', output.numpy())

最后运行返回Ture即为成功
import numpy as nppaddle_output=np.load('paddle_resnet50.npy') torch_output=np.load('torch_resnet50.npy') print(np.allclose(paddle_output,torch_output, atol=1e-5))

    推荐阅读