数据结构|七大常用排序

【注】这里的排序都以升序举例
目录
一、插入排序
1、直接插入排序
2、希尔排序
二、选择排序
1、选择排序
2、堆排序
三、交换排序
1、冒泡排序
2、快速排序
四、归并排序
五、排序算法的分析

一、插入排序 1、直接插入排序
当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]与array[i-1],array[i-2],…进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移

数据越接近有序,直接插入排序的时间消耗越少。
时间复杂度:O(N^2)
空间复杂度O(1),是一种稳定的算法
数据结构|七大常用排序
文章图片
直接插入排序
public static void insertSort(int[] array){ for (int i = 1; i < array.length; i++) { int tmp=array[i]; int j=i-1; for(; j>=0; --j){ if(array[j]>tmp){ array[j+1]=array[j]; }else{ break; } } array[j+1]=tmp; } }

2、希尔排序
【数据结构|七大常用排序】希尔排序法的基本思想是:先选定一个整数gap,把待排序文件中所有记录分成gap个组,所有距离为gap的数分在同一组内,并对每一组内的数进行直接插入排序。然后取gap=gap/2,重复上述分组和排序的工作。当gap=1时,所有数在一组内进行直接插入排序。
  • 希尔排序是对直接插入排序的优化。
  • 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,直接插入排序会很快。
  • 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算。
数据结构|七大常用排序
文章图片
希尔排序
public static void shellSort(int[] array){ int size=array.length; //这里定义gap的初始值为数组长度的一半 int gap=size/2; while(gap>0){ //间隔为gap的直接插入排序 for (int i = gap; i < size; i++) { int tmp=array[i]; int j=i-gap; for(; j>=0; j-=gap){ if(array[j]>tmp){ array[j+gap]=array[j]; }else{ break; } } array[j+gap]=tmp; } gap/=2; } }

二、选择排序 1、选择排序
  • 在元素集合array[i]--array[n-1]中选择最小的数据元素
  • 若它不是这组元素中的第一个,则将它与这组元素中的第一个元素交换
  • 在剩余的集合中,重复上述步骤,直到集合剩余1个元素
时间复杂度:O(N^2)
空间复杂度为O(1),不稳定
数据结构|七大常用排序
文章图片
选择排序
//交换 private static void swap(int[] array,int i,int j){ int tmp=array[i]; array[i]=array[j]; array[j]=tmp; } //选择排序 public static void chooseSort(int[] array){ for (int i = 0; i < array.length; i++) { int minIndex=i; //记录最小值的下标 for (int j = i+1; j < array.length; j++) { if (array[j]

2、堆排序
堆排序的两种思路(以升序为例):
  • 创建小根堆,依次取出堆顶元素放入数组中,直到堆为空
  • 创建大根堆,定义堆的尾元素位置key,每次交换堆顶元素和key位置的元素(key--),直到key到堆顶,此时将堆中元素层序遍历即为升序(如下)
时间复杂度:O(N^2)
空间复杂度:O(N),不稳定
数据结构|七大常用排序
文章图片
堆排序
//向下调整 public static void shiftDown(int[] array,int parent,int len){ int child=parent*2+1; while(childarray[child]){ child++; } } if(array[child]>array[parent]){ swap(array,child,parent); parent=child; child=parent*2+1; }else{ break; }} } //创建大根堆 private static void createHeap(int[] array){ for (int parent = (array.length-1-1)/2; parent >=0; parent--) { shiftDown(array,parent,array.length); } } //堆排序 public static void heapSort(int[] array){ //创建大根堆 createHeap(array); //排序 for (int i = array.length-1; i >0; i--) { swap(array,0,i); shiftDown(array,0,i); } }

三、交换排序 1、冒泡排序
两层循环,第一层循环表示要排序的趟数,第二层循环表示每趟要比较的次数;这里的冒泡排序做了优化,在每一趟比较时,我们可以定义一个计数器来记录数据交换的次数,如果没有交换,则表示数据已经有序,不需要再进行排序了。
时间复杂度:O(N^2)
空间复杂度为O(1),是一个稳定的排序
数据结构|七大常用排序
文章图片
冒泡排序
public static void bubbleSort(int[] array){ for(int i=0; iarray[j+1]){ swap(array,j,j+1); count++; } } if(count==0){ break; } } }

2、快速排序
任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。
时间复杂度:最好O(n*logn):每次可以尽量将待排序的序列均匀分割
最坏O(N^2):待排序序列本身是有序的
空间复杂度:最好O(logn)、最坏O(N)。不稳定的排序
(1)挖坑法
当数据有序时,快速排序就相当于二叉树没有左子树或右子树,此时空间复杂度会达到O(N),如果大量数据进行排序,可能会导致栈溢出。
public static void quickSort(int[] array,int left,int right){ if(left>=right){ return; } int l=left; int r=right; int tmp=array[l]; while(l=tmp&&l

(2)快速排序的优化
  • 三数取中法选key
关于key值的选取,如果待排序序列是有序的,那么我们选取第一个或最后一个作为key可能导致分割的左边或右边为空,这时快速排序的空间复杂度会比较大,容易造成栈溢出。那么我们可以采用三数取中法来取消这种情况。找到序列的第一个,最后一个,以及中间的一个元素,以他们的中间值作为key值。
//key值的优化,只在快速排序中使用,则可以为private private int threeMid(int[] array,int left,int right){ int mid=(left+right)/2; if(array[left]>array[right]){ if(array[mid]>array[left]){ return left; } return array[mid]array[right]?right:mid; } }

  • 递归到小的子区间时,可以考虑用插入排序
随着我们递归的进行,区间会变的越来越小,我们可以在区间小到一个值的时候,对其进行插入排序,这样代码的效率会提高很多。
(3)快速排序的非递归实现
//找到一次划分的下标 public static int patition(int[] array,int left,int right){ int tmp=array[left]; while(left=tmp){ right--; } array[left]=array[right]; while(left stack=new Stack<>(); int left=0; int right=array.length-1; stack.push(left); stack.push(right); while(!stack.isEmpty()){ int r=stack.pop(); int l=stack.pop(); int p=patition(array,l,r); if(p-1>l){ stack.push(l); stack.push(p-1); } if(p+1

四、归并排序
归并排序(MERGE-SORT):该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
时间复杂度:O(n*logN)(无论有序还是无序)
空间复杂度:O(N)。是稳定的排序。
数据结构|七大常用排序
文章图片

//归并排序:递归 public static void mergeSort(int[] array,int left,int right){ if(left>=right){ return; } int mid=(left+right)/2; //递归分割 mergeSort(array,left,mid); mergeSort(array,mid+1,right); //合并 merge(array,left,right,mid); } //非递归 public static void mergeSort1(int[] array){ int gap=1; while(gap=array.length){ mid=array.length-1; } int right=left+2*gap-1; if(right>=array.length){ right=array.length-1; } merge(array,left,right,mid); } gap=gap*2; } } //合并:合并两个有序数组 public static void merge(int[] array,int left,int right,int mid){ int[] tmp=new int[right-left+1]; int k=0; int s1=left; int e1=mid; int s2=mid+1; int e2=right; while(s1<=e1&&s2<=e2){ if(array[s1]<=array[s2]){ tmp[k++]=array[s1++]; }else{ tmp[k++]=array[s2++]; } } while(s1<=e1){ tmp[k++]=array[s1++]; } while(s2<=e2){ tmp[k++]=array[s2++]; } for (int i = left; i <= right; i++) { array[i]=tmp[i-left]; } }

五、排序算法的分析
排序方法 最好时间复杂度 最坏时间复杂度 空间复杂度 稳定性
直接插入排序 O(n) O(n^2) O(1) 稳定
希尔排序 O(n) O(n^2) O(1) 不稳定
直接排序 O(n^2) O(n^2) O(1) 不稳定
堆排序 O(nlog(2)n) O(nlog(2)n) O(1) 不稳定
冒泡排序 O(n) O(n^2) O(1) 稳定
快速排序 O(nlog(2)n) O(n^2) O(nlog(2)n) 不稳定
归并排序 O(nlog(2)n) O(nlog(2)n) O(n) 稳定

    推荐阅读