Factorials|Factorials and Powers of Two

Factorials|Factorials and Powers of Two
文章图片




分析:我们可以看出这道题目的描述并不是很复杂,就是说对于一个给定的整数n,我们能否把他拆成k个powerful的数,也就是说这k个数要么是2的幂次,要么是某个数的阶乘,并且我们要让当前的k越小越好;然后如果不能被拆的话输出-1;

我们这样来看,先看会不会输出-1,我们如果把这个整数n用二进制的方法写出来,每个1都表明可以写成某个powerful的数,所以不可能输出-1;
那么我们就可以发现了k的个数就是这里二进制表示中1的个数,但是我们考虑到还有阶乘,我们令阶乘的和为s,个数为cnt,则k = cnt + F(n-s),这里的F函数就是根据二进制找1;
既然这样我们就可以枚举每个阶乘的可能性,我们发现14!已经是最大的可能了,因为15!就已经超过了1^12的数据范围,并且我们可以发现1!和2!是不需要考虑的,因为他们和幂次是一换一的关系没有必要,所以最多只需要枚举2^12次,找到最小值即可!
【Factorials|Factorials and Powers of Two】那么这里的关键是在于我怎么把这么多种可能枚举出来呢,很显然不适合用dfs,所以我们这里枚举i为0~1<<12,然后再去枚举j从0~11,看i&1<
代码:

  1. #include
  2. #define INF 1100000000
  3. using namespace std;
  4. typedef long long LL;
  5. typedef pair PII;
  6. LL fa[20],n;
  7. int k = INF;
  8. int find(LL x){
  9. int cnt = 0;
  10. while(x){
  11. cnt += x&1;
  12. x >>= 1;
  13. }
  14. return cnt;
  15. }
  16. int main()
  17. {
  18. int t;
  19. cin >> t;
  20. fa[1] = 1;
  21. fa[2] = 2;
  22. for(int i = 3; i<=14; i++) fa[i] = fa[i-1]*i;
  23. while(t--){
  24. k = 1100000000;
  25. cin >> n;
  26. for(int i = 0; i<(1<<12); i++){
  27. int cnt = 0;
  28. LL s = 0;
  29. for(int j = 0; j<=11; j++){
  30. if(i&(1<
  31. cnt++;
  32. s+=fa[j+3];
  33. }
  34. }
  35. if(s>n) continue;
  36. k = min(k,cnt + find(n - s));
  37. }
  38. cout << k << '\n';
  39. }
  40. return 0;
  41. }

    推荐阅读