JDK源码之Vector与HashSet解析
Vector简介
ArrayList 和 Vector 其实大同小异,基本结构都差不多,但是一些细节上有区别:比如线程安全与否,扩容的大小等,Vector的线程安全通过在方法上直接加synchronized实现。扩容默认扩大为原来的2倍。
继承体系
文章图片
从图中我们可以看出:Vector继承了AbstractList,实现了List,RandomAccess,Cloneable,Serializable接口,因此Vector支持快速随机访问,可以被克隆,支持序列化。
Vector的成员变量(属性)
// Object类型的数组// 注意:访问修饰符有所不同,Vector用protected修饰,而ArrayList用private修饰。// JavaSe中:private变量只能被当前类的方法访问,而protected可以被同一包中的所有类和其他包的子类访问protected Object[] elementData; // 动态数组的实际有效大小,即数组中存储的元素个数protected int elementCount; // 动态数组的增长系数:若开始事先没有指定,则默认是增加一倍的大小protected int capacityIncrement; // 序列版本号private static final long serialVersionUID = -2767605614048989439L;
Vector的构造函数
Vector的构造函数有四个:
// 默认空参构造函数public Vector() {// 调用指定初始容量的构造函数,初始容量为10this(10); }// 可以指定初始容量的构造函数public Vector(int initialCapacity) {// 调用指定初始容量和增长系数的构造函数,增长系数设置为0this(initialCapacity, 0); }// 可以指定初始容量和增长系数的构造函数public Vector(int initialCapacity, int capacityIncrement) {super(); if (initialCapacity < 0)throw new IllegalArgumentException("Illegal Capacity: "+initialCapacity); // 根据初始容量创建一个Object类型的数组this.elementData = https://www.it610.com/article/new Object[initialCapacity]; // 给增长系数赋值this.capacityIncrement = capacityIncrement; }// 参数为集合类型的构造函数public Vector(Collection extends E> c) {elementData = https://www.it610.com/article/c.toArray(); elementCount = elementData.length; // c.toArray might (incorrectly) not return Object[] (see 6260652)if (elementData.getClass() != Object[].class)// 将参数集合c 中的数据拷贝到elementDataelementData = Arrays.copyOf(elementData, elementCount, Object[].class); }
Vector成员方法
get方法
// 获得指定下标的元素数据public synchronized E get(int index) {if (index >= elementCount)throw new ArrayIndexOutOfBoundsException(index); return elementData(index); }@SuppressWarnings("unchecked")E elementData(int index) {return (E) elementData[index]; }
set方法
// 修改指定下标的元素数据public synchronized E set(int index, E element) {if (index >= elementCount)throw new ArrayIndexOutOfBoundsException(index); E oldValue = https://www.it610.com/article/elementData(index); elementData[index] = element; return oldValue; }
remove方法
// 删除某个元素数据public boolean remove(Object o) {return removeElement(o); }// public synchronized boolean removeElement(Object obj) {modCount++; // 找到指定元素的下标int i = indexOf(obj); if (i >= 0) {// 根据下标删除元素removeElementAt(i); return true; }return false; }// 根据下标删除元素public synchronized void removeElementAt(int index) {modCount++; if (index >= elementCount) {throw new ArrayIndexOutOfBoundsException(index + " >= " +elementCount); }else if (index < 0) {throw new ArrayIndexOutOfBoundsException(index); }// index之后的有效元素数量int j = elementCount - index - 1; if (j > 0) {// 旧数组替换新数组System.arraycopy(elementData, index + 1, elementData, index, j); }// 有效元素数量--elementCount--; elementData[elementCount] = null; /* to let gc do its work */}
add方法
// 在数组末尾添加指定元素public synchronized boolean add(E e) {modCount++; // 判断是否需要扩容ensureCapacityHelper(elementCount + 1); elementData[elementCount++] = e; return true; }
其他方法
// 将数组Vector中的全部元素都拷贝到数组anArray中去,调用本地方法arraycopypublic synchronized void copyInto(Object[] anArray) {System.arraycopy(elementData, 0, anArray, 0, elementCount); }public synchronized void trimToSize() {modCount++; int oldCapacity = elementData.length; if (elementCount < oldCapacity) {elementData = https://www.it610.com/article/Arrays.copyOf(elementData, elementCount); }}// 设置Vector数组的大小public synchronized void setSize(int newSize) {// 修改次数++modCount++; // 判断设置的数组大小是否大于Vector中有存储的效元素的个数// 若 newSize> Vector中有存储的效元素的个数,则调整Vector的大小if (newSize > elementCount) {// 调用判断是否扩容的方法,如果需要扩容则该方法内部调用扩容方法grow()ensureCapacityHelper(newSize); } else {// 如果上述判断不成立,则将newSize位置之后开始的元素都设置为nullfor (int i = newSize ; i < elementCount ; i++) {elementData[i] = null; }}// 更新有效元素个数elementCount = newSize; }// 获取Vector的当前容量public synchronized int capacity() {return elementData.length; }// 获取Vector里面的有效元素个数public synchronized int size() {return elementCount; }// 判断Vecotor中是否包含元素 opublic boolean contains(Object o) {return indexOf(o, 0) >= 0; }// 获取Vector数组中第一次出现对象o的下标,如果不存在,那么返回-1public int indexOf(Object o) {return indexOf(o, 0); }// 返回从index出开始第一次出现对象o的下标,如果不存在,那么返回-1public synchronized int indexOf(Object o, int index) {if (o == null) {for (int i = index ; i < elementCount ; i++)if (elementData[i]==null)return i; } else {for (int i = index ; i < elementCount ; i++)if (o.equals(elementData[i]))return i; }return -1; }......
Vector的扩容方法
// 确定数组当前的容量大小public synchronized void ensureCapacity(int minCapacity) {if (minCapacity > 0) {modCount++; ensureCapacityHelper(minCapacity); }}// 如果:当前容量 > 当前数组长度,就调用grow(minCapacity)方法进行扩容// 由于该方法是在ensureCapacity()中被调用的,而ensureCapacity()方法中已经加上了synchronized锁,所以// 该方法不需要再加锁private void ensureCapacityHelper(int minCapacity) {// overflow-conscious codeif (minCapacity - elementData.length > 0)grow(minCapacity); }// 最大上限的数组容量大小private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE // Vector集合中的核心扩容方法private void grow(int minCapacity) {// overflow-conscious code// 获取旧数组的容量int oldCapacity = elementData.length; // 得到扩容后(如果需要扩容的话)的新数组容量int newCapacity = oldCapacity + ((capacityIncrement > 0) ?capacityIncrement : oldCapacity); // 如果新容量 < 数组实际所需容量,则令newCapacity = minCapacityif (newCapacity - minCapacity < 0)newCapacity = minCapacity; // 如果当前所需容量 > MAX_ARRAY_SIZE,则新容量设为 Integer.MAX_VALUE,否则设为 MAX_ARRAY_SIZEif (newCapacity - MAX_ARRAY_SIZE > 0)newCapacity = hugeCapacity(minCapacity); elementData = https://www.it610.com/article/Arrays.copyOf(elementData, newCapacity); }// 最大容量private static int hugeCapacity(int minCapacity) {if (minCapacity < 0) // overflowthrow new OutOfMemoryError(); return (minCapacity> MAX_ARRAY_SIZE) ?Integer.MAX_VALUE :MAX_ARRAY_SIZE; }
完整源码
public class Vectorextends AbstractList implements List , RandomAccess, Cloneable, java.io.Serializable{protected Object[] elementData; protected int elementCount; protected int capacityIncrement; private static final long serialVersionUID = -2767605614048989439L; public Vector(int initialCapacity, int capacityIncrement) {super(); if (initialCapacity < 0)throw new IllegalArgumentException("Illegal Capacity: "+initialCapacity); this.elementData = https://www.it610.com/article/new Object[initialCapacity]; this.capacityIncrement = capacityIncrement; }public Vector(int initialCapacity) {this(initialCapacity, 0); }public Vector() {this(10); }public Vector(Collection extends E> c) {elementData = https://www.it610.com/article/c.toArray(); elementCount = elementData.length; // c.toArray might (incorrectly) not return Object[] (see 6260652)if (elementData.getClass() != Object[].class)elementData = Arrays.copyOf(elementData, elementCount, Object[].class); }public synchronized void copyInto(Object[] anArray) {System.arraycopy(elementData, 0, anArray, 0, elementCount); }public synchronized void trimToSize() {modCount++; int oldCapacity = elementData.length; if (elementCount < oldCapacity) {elementData = Arrays.copyOf(elementData, elementCount); }}public synchronized void ensureCapacity(int minCapacity) {if (minCapacity> 0) {modCount++; ensureCapacityHelper(minCapacity); }}private void ensureCapacityHelper(int minCapacity) {// overflow-conscious codeif (minCapacity - elementData.length > 0)grow(minCapacity); }private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; private void grow(int minCapacity) {// overflow-conscious codeint oldCapacity = elementData.length; int newCapacity = oldCapacity + ((capacityIncrement > 0) ?capacityIncrement : oldCapacity); if (newCapacity - minCapacity < 0)newCapacity = minCapacity; if (newCapacity - MAX_ARRAY_SIZE > 0)newCapacity = hugeCapacity(minCapacity); elementData = https://www.it610.com/article/Arrays.copyOf(elementData, newCapacity); }private static int hugeCapacity(int minCapacity) {if (minCapacity < 0) // overflowthrow new OutOfMemoryError(); return (minCapacity> MAX_ARRAY_SIZE) ?Integer.MAX_VALUE :MAX_ARRAY_SIZE; }public synchronized void setSize(int newSize) {modCount++; if (newSize > elementCount) {ensureCapacityHelper(newSize); } else {for (int i = newSize ; i < elementCount ; i++) {elementData[i] = null; }}elementCount = newSize; }public synchronized int capacity() {return elementData.length; }public synchronized int size() {return elementCount; }public synchronized boolean isEmpty() {return elementCount == 0; }public Enumeration elements() {return new Enumeration () {int count = 0; public boolean hasMoreElements() {return count < elementCount; }public E nextElement() {synchronized (Vector.this) {if (count < elementCount) {return elementData(count++); }}throw new NoSuchElementException("Vector Enumeration"); }}; }public boolean contains(Object o) {return indexOf(o, 0) >= 0; }public int indexOf(Object o) {return indexOf(o, 0); }public synchronized int indexOf(Object o, int index) {if (o == null) {for (int i = index ; i < elementCount ; i++)if (elementData[i]==null)return i; } else {for (int i = index ; i < elementCount ; i++)if (o.equals(elementData[i]))return i; }return -1; }public synchronized int lastIndexOf(Object o) {return lastIndexOf(o, elementCount-1); }public synchronized int lastIndexOf(Object o, int index) {if (index >= elementCount)throw new IndexOutOfBoundsException(index + " >= "+ elementCount); if (o == null) {for (int i = index; i >= 0; i--)if (elementData[i]==null)return i; } else {for (int i = index; i >= 0; i--)if (o.equals(elementData[i]))return i; }return -1; }public synchronized E elementAt(int index) {if (index >= elementCount) {throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount); }return elementData(index); }public synchronized E firstElement() {if (elementCount == 0) {throw new NoSuchElementException(); }return elementData(0); }public synchronized E lastElement() {if (elementCount == 0) {throw new NoSuchElementException(); }return elementData(elementCount - 1); }public synchronized void setElementAt(E obj, int index) {if (index >= elementCount) {throw new ArrayIndexOutOfBoundsException(index + " >= " +elementCount); }elementData[index] = obj; }public synchronized void removeElementAt(int index) {modCount++; if (index >= elementCount) {throw new ArrayIndexOutOfBoundsException(index + " >= " +elementCount); }else if (index < 0) {throw new ArrayIndexOutOfBoundsException(index); }int j = elementCount - index - 1; if (j > 0) {System.arraycopy(elementData, index + 1, elementData, index, j); }elementCount--; elementData[elementCount] = null; /* to let gc do its work */}public synchronized void insertElementAt(E obj, int index) {modCount++; if (index > elementCount) {throw new ArrayIndexOutOfBoundsException(index+ " > " + elementCount); }ensureCapacityHelper(elementCount + 1); System.arraycopy(elementData, index, elementData, index + 1, elementCount - index); elementData[index] = obj; elementCount++; }public synchronized void addElement(E obj) {modCount++; ensureCapacityHelper(elementCount + 1); elementData[elementCount++] = obj; }public synchronized boolean removeElement(Object obj) {modCount++; int i = indexOf(obj); if (i >= 0) {removeElementAt(i); return true; }return false; }public synchronized void removeAllElements() {modCount++; // Let gc do its workfor (int i = 0; i < elementCount; i++)elementData[i] = null; elementCount = 0; }public synchronized Object clone() {try {@SuppressWarnings("unchecked")Vector v = (Vector ) super.clone(); v.elementData = https://www.it610.com/article/Arrays.copyOf(elementData, elementCount); v.modCount = 0; return v; } catch (CloneNotSupportedException e) {// this shouldn't happen, since we are Cloneablethrow new InternalError(e); }}public synchronized Object[] toArray() {return Arrays.copyOf(elementData, elementCount); }@SuppressWarnings("unchecked")public synchronized T[] toArray(T[] a) {if (a.length < elementCount)return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass()); System.arraycopy(elementData, 0, a, 0, elementCount); if (a.length > elementCount)a[elementCount] = null; return a; }// Positional Access Operations@SuppressWarnings("unchecked")E elementData(int index) {return (E) elementData[index]; }public synchronized E get(int index) {if (index >= elementCount)throw new ArrayIndexOutOfBoundsException(index); return elementData(index); }public synchronized E set(int index, E element) {if (index >= elementCount)throw new ArrayIndexOutOfBoundsException(index); E oldValue = https://www.it610.com/article/elementData(index); elementData[index] = element; return oldValue; }public synchronized boolean add(E e) {modCount++; ensureCapacityHelper(elementCount + 1); elementData[elementCount++] = e; return true; }public boolean remove(Object o) {return removeElement(o); }public void add(int index, E element) {insertElementAt(element, index); }public synchronized E remove(int index) {modCount++; if (index>= elementCount)throw new ArrayIndexOutOfBoundsException(index); E oldValue = https://www.it610.com/article/elementData(index); int numMoved = elementCount - index - 1; if (numMoved> 0)System.arraycopy(elementData, index+1, elementData, index,numMoved); elementData[--elementCount] = null; // Let gc do its workreturn oldValue; }public void clear() {removeAllElements(); }// Bulk Operationspublic synchronized boolean containsAll(Collection> c) {return super.containsAll(c); }public synchronized boolean addAll(Collection extends E> c) {modCount++; Object[] a = c.toArray(); int numNew = a.length; ensureCapacityHelper(elementCount + numNew); System.arraycopy(a, 0, elementData, elementCount, numNew); elementCount += numNew; return numNew != 0; }public synchronized boolean removeAll(Collection> c) {return super.removeAll(c); }public synchronized boolean retainAll(Collection> c) {return super.retainAll(c); }public synchronized boolean addAll(int index, Collection extends E> c) {modCount++; if (index < 0 || index > elementCount)throw new ArrayIndexOutOfBoundsException(index); Object[] a = c.toArray(); int numNew = a.length; ensureCapacityHelper(elementCount + numNew); int numMoved = elementCount - index; if (numMoved > 0)System.arraycopy(elementData, index, elementData, index + numNew,numMoved); System.arraycopy(a, 0, elementData, index, numNew); elementCount += numNew; return numNew != 0; }public synchronized boolean equals(Object o) {return super.equals(o); }public synchronized int hashCode() {return super.hashCode(); }public synchronized String toString() {return super.toString(); }public synchronized List subList(int fromIndex, int toIndex) {return Collections.synchronizedList(super.subList(fromIndex, toIndex),this); }protected synchronized void removeRange(int fromIndex, int toIndex) {modCount++; int numMoved = elementCount - toIndex; System.arraycopy(elementData, toIndex, elementData, fromIndex,numMoved); // Let gc do its workint newElementCount = elementCount - (toIndex-fromIndex); while (elementCount != newElementCount)elementData[--elementCount] = null; }private void readObject(ObjectInputStream in)throws IOException, ClassNotFoundException {ObjectInputStream.GetField gfields = in.readFields(); int count = gfields.get("elementCount", 0); Object[] data = https://www.it610.com/article/(Object[])gfields.get("elementData", null); if (count < 0 || data =https://www.it610.com/article/= null || count> data.length) {throw new StreamCorruptedException("Inconsistent vector internals"); }elementCount = count; elementData = https://www.it610.com/article/data.clone(); }private void writeObject(java.io.ObjectOutputStream s)throws java.io.IOException {final java.io.ObjectOutputStream.PutField fields = s.putFields(); final Object[] data; synchronized (this) {fields.put("capacityIncrement", capacityIncrement); fields.put("elementCount", elementCount); data = https://www.it610.com/article/elementData.clone(); }fields.put("elementData", data); s.writeFields(); }public synchronized ListIterator listIterator(int index) {if (index < 0 || index > elementCount)throw new IndexOutOfBoundsException("Index: "+index); return new ListItr(index); }public synchronized ListIterator listIterator() {return new ListItr(0); }public synchronized Iterator iterator() {return new Itr(); }private class Itr implements Iterator {int cursor; // index of next element to returnint lastRet = -1; // index of last element returned; -1 if no suchint expectedModCount = modCount; public boolean hasNext() {// Racy but within spec, since modifications are checked// within or after synchronization in next/previousreturn cursor != elementCount; }public E next() {synchronized (Vector.this) {checkForComodification(); int i = cursor; if (i >= elementCount)throw new NoSuchElementException(); cursor = i + 1; return elementData(lastRet = i); }}public void remove() {if (lastRet == -1)throw new IllegalStateException(); synchronized (Vector.this) {checkForComodification(); Vector.this.remove(lastRet); expectedModCount = modCount; }cursor = lastRet; lastRet = -1; }@Overridepublic void forEachRemaining(Consumer super E> action) {Objects.requireNonNull(action); synchronized (Vector.this) {final int size = elementCount; int i = cursor; if (i >= size) {return; }@SuppressWarnings("unchecked")final E[] elementData = https://www.it610.com/article/(E[]) Vector.this.elementData; if (i>= elementData.length) {throw new ConcurrentModificationException(); }while (i != size && modCount == expectedModCount) {action.accept(elementData[i++]); }// update once at end of iteration to reduce heap write trafficcursor = i; lastRet = i - 1; checkForComodification(); }}final void checkForComodification() {if (modCount != expectedModCount)throw new ConcurrentModificationException(); }}/*** An optimized version of AbstractList.ListItr*/final class ListItr extends Itr implements ListIterator {ListItr(int index) {super(); cursor = index; }public boolean hasPrevious() {return cursor != 0; }public int nextIndex() {return cursor; }public int previousIndex() {return cursor - 1; }public E previous() {synchronized (Vector.this) {checkForComodification(); int i = cursor - 1; if (i < 0)throw new NoSuchElementException(); cursor = i; return elementData(lastRet = i); }}public void set(E e) {if (lastRet == -1)throw new IllegalStateException(); synchronized (Vector.this) {checkForComodification(); Vector.this.set(lastRet, e); }}public void add(E e) {int i = cursor; synchronized (Vector.this) {checkForComodification(); Vector.this.add(i, e); expectedModCount = modCount; }cursor = i + 1; lastRet = -1; }}@Overridepublic synchronized void forEach(Consumer super E> action) {Objects.requireNonNull(action); final int expectedModCount = modCount; @SuppressWarnings("unchecked")final E[] elementData = https://www.it610.com/article/(E[]) this.elementData; final int elementCount = this.elementCount; for (int i=0; modCount == expectedModCount && i < elementCount; i++) {action.accept(elementData[i]); }if (modCount != expectedModCount) {throw new ConcurrentModificationException(); }}@Override@SuppressWarnings("unchecked")public synchronized boolean removeIf(Predicate super E> filter) {Objects.requireNonNull(filter); // figure out which elements are to be removed// any exception thrown from the filter predicate at this stage// will leave the collection unmodifiedint removeCount = 0; final int size = elementCount; final BitSet removeSet = new BitSet(size); final int expectedModCount = modCount; for (int i=0; modCount == expectedModCount && i < size; i++) {@SuppressWarnings("unchecked")final E element = (E) elementData[i]; if (filter.test(element)) {removeSet.set(i); removeCount++; }}if (modCount != expectedModCount) {throw new ConcurrentModificationException(); }// shift surviving elements left over the spaces left by removed elementsfinal boolean anyToRemove = removeCount > 0; if (anyToRemove) {final int newSize = size - removeCount; for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {i = removeSet.nextClearBit(i); elementData[j] = elementData[i]; }for (int k=newSize; k < size; k++) {elementData[k] = null; // Let gc do its work}elementCount = newSize; if (modCount != expectedModCount) {throw new ConcurrentModificationException(); }modCount++; }return anyToRemove; }@Override@SuppressWarnings("unchecked")public synchronized void replaceAll(UnaryOperator operator) {Objects.requireNonNull(operator); final int expectedModCount = modCount; final int size = elementCount; for (int i=0; modCount == expectedModCount && i < size; i++) {elementData[i] = operator.apply((E) elementData[i]); }if (modCount != expectedModCount) {throw new ConcurrentModificationException(); }modCount++; }@SuppressWarnings("unchecked")@Overridepublic synchronized void sort(Comparator super E> c) {final int expectedModCount = modCount; Arrays.sort((E[]) elementData, 0, elementCount, c); if (modCount != expectedModCount) {throw new ConcurrentModificationException(); }modCount++; }@Overridepublic Spliterator spliterator() {return new VectorSpliterator<>(this, null, 0, -1, 0); }/** Similar to ArrayList Spliterator */static final class VectorSpliterator implements Spliterator {private final Vector list; private Object[] array; private int index; // current index, modified on advance/splitprivate int fence; // -1 until used; then one past last indexprivate int expectedModCount; // initialized when fence set/** Create new spliterator covering the givenrange */VectorSpliterator(Vector list, Object[] array, int origin, int fence,int expectedModCount) {this.list = list; this.array = array; this.index = origin; this.fence = fence; this.expectedModCount = expectedModCount; }private int getFence() { // initialize on first useint hi; if ((hi = fence) < 0) {synchronized(list) {array = list.elementData; expectedModCount = list.modCount; hi = fence = list.elementCount; }}return hi; }public Spliterator trySplit() {int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid) ? null :new VectorSpliterator (list, array, lo, index = mid,expectedModCount); }@SuppressWarnings("unchecked")public boolean tryAdvance(Consumer super E> action) {int i; if (action == null)throw new NullPointerException(); if (getFence() > (i = index)) {index = i + 1; action.accept((E)array[i]); if (list.modCount != expectedModCount)throw new ConcurrentModificationException(); return true; }return false; }@SuppressWarnings("unchecked")public void forEachRemaining(Consumer super E> action) {int i, hi; // hoist accesses and checks from loopVector lst; Object[] a; if (action == null)throw new NullPointerException(); if ((lst = list) != null) {if ((hi = fence) < 0) {synchronized(lst) {expectedModCount = lst.modCount; a = array = lst.elementData; hi = fence = lst.elementCount; }}elsea = array; if (a != null && (i = index) >= 0 && (index = hi) <= a.length) {while (i < hi)action.accept((E) a[i++]); if (lst.modCount == expectedModCount)return; }}throw new ConcurrentModificationException(); }public long estimateSize() {return (long) (getFence() - index); }public int characteristics() {return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; }}}
HashSet简介
HashSet的特点
- 无序性(存储元素无序)
- 唯一性(允许使用null)
- 本质上,HashSet底层是通过HashMap来保证唯一性
- HashSet没有提供get()方法,同HashMap一样,因为Set内部是无序的,所以只能通过迭代的方式获得
HashSet的继承体系
文章图片
HashSet源码分析 1. 属性(成员变量)
// HashSet内部使用HashMap来存储元素,因此本质上是HashMapprivate transient HashMapmap; // 虚拟对象,用来作为value放到map中(在HashSet底层的HashMap中,key为要存储的元素,value统一为PRESENT)private static final Object PRESENT = new Object();
2. 构造方法
public HashSet() {map = new HashMap<>(); }public HashSet(Collection extends E> c) {map = new HashMap<>(Math.max((int) (c.size()/.75f) + 1, 16)); addAll(c); }public HashSet(int initialCapacity, float loadFactor) {map = new HashMap<>(initialCapacity, loadFactor); }public HashSet(int initialCapacity) {map = new HashMap<>(initialCapacity); }// 注意:这里未用public修饰,主要是给LinkedHashSet使用的HashSet(int initialCapacity, float loadFactor, boolean dummy) {map = new LinkedHashMap<>(initialCapacity, loadFactor); }
构造方法都是调用HashMap对应的构造方法。最后一个构造方法有点特殊,它不是public的,意味着它只能被同一个包或者子类调用,这是LinkedHashSet专属的方法。
3. 成员方法
3.1 添加元素add(E e)
// HashSet添加元素的时候,直接调用的是HashMap中的put()方法,// 把元素本身作为key,把PRESENT作为value,也就是这个map中所有的value都是一样的。public boolean add(E e) {return map.put(e, PRESENT)==null; }
3.2 删除元素remove(Object o)
// HashSet删除元素,直接调用HashMap的remove方法public boolean remove(Object o) {// 注意:map的remove返回是删除元素的value,而Set的remov返回的是boolean类型// 如果是null的话说明没有该元素,如果不是null肯定等于PRESENTreturn map.remove(o)==PRESENT; }
3.3 查找元素contains(Object o)
// Set中没有get()方法,不像List那样可以按index获取元素public boolean contains(Object o) {return map.containsKey(o); }
4. 完整代码
HashSet是基于HashMap的,所以其源码较少:
package java.util; import java.io.InvalidObjectException; import sun.misc.SharedSecrets; public class HashSetextends AbstractSet implements Set , Cloneable, java.io.Serializable{static final long serialVersionUID = -5024744406713321676L; // 内部元素存储在HashMap中private transient HashMap map; // 虚拟元素,用来存到map元素的value中的,没有实际意义private static final Object PRESENT = new Object(); // 空构造方法public HashSet() {map = new HashMap<>(); }// 把另一个集合的元素全都添加到当前Set中// 注意,这里初始化map的时候是计算了它的初始容量的public HashSet(Collection extends E> c) {map = new HashMap<>(Math.max((int) (c.size()/.75f) + 1, 16)); addAll(c); }// 指定初始容量和装载因子public HashSet(int initialCapacity, float loadFactor) {map = new HashMap<>(initialCapacity, loadFactor); }// 只指定初始容量public HashSet(int initialCapacity) {map = new HashMap<>(initialCapacity); }// LinkedHashSet专用的方法// dummy是没有实际意义的, 只是为了跟上上面那个操持方法签名不同而已HashSet(int initialCapacity, float loadFactor, boolean dummy) {map = new LinkedHashMap<>(initialCapacity, loadFactor); }// 迭代器public Iterator iterator() {return map.keySet().iterator(); }// 元素个数public int size() {return map.size(); }// 检查是否为空public boolean isEmpty() {return map.isEmpty(); }// 检查是否包含某个元素public boolean contains(Object o) {return map.containsKey(o); }// 添加元素public boolean add(E e) {return map.put(e, PRESENT)==null; }// 删除元素public boolean remove(Object o) {return map.remove(o)==PRESENT; }// 清空所有元素public void clear() {map.clear(); }// 克隆方法@SuppressWarnings("unchecked")public Object clone() {try {HashSet newSet = (HashSet ) super.clone(); newSet.map = (HashMap ) map.clone(); return newSet; } catch (CloneNotSupportedException e) {throw new InternalError(e); }}// 序列化写出方法private void writeObject(java.io.ObjectOutputStream s)throws java.io.IOException {// 写出非static非transient属性s.defaultWriteObject(); // 写出map的容量和装载因子s.writeInt(map.capacity()); s.writeFloat(map.loadFactor()); // 写出元素个数s.writeInt(map.size()); // 遍历写出所有元素for (E e : map.keySet())s.writeObject(e); }// 序列化读入方法private void readObject(java.io.ObjectInputStream s)throws java.io.IOException, ClassNotFoundException {// 读入非static非transient属性s.defaultReadObject(); // 读入容量, 并检查不能小于0int capacity = s.readInt(); if (capacity < 0) {throw new InvalidObjectException("Illegal capacity: " +capacity); }// 读入装载因子, 并检查不能小于等于0或者是NaN(Not a Number)// java.lang.Float.NaN = 0.0f / 0.0f; float loadFactor = s.readFloat(); if (loadFactor <= 0 || Float.isNaN(loadFactor)) {throw new InvalidObjectException("Illegal load factor: " +loadFactor); }// 读入元素个数并检查不能小于0int size = s.readInt(); if (size < 0) {throw new InvalidObjectException("Illegal size: " +size); }// 根据元素个数重新设置容量// 这是为了保证map有足够的容量容纳所有元素, 防止无意义的扩容capacity = (int) Math.min(size * Math.min(1 / loadFactor, 4.0f),HashMap.MAXIMUM_CAPACITY); // 再次检查某些东西, 不重要的代码忽视掉SharedSecrets.getJavaOISAccess().checkArray(s, Map.Entry[].class, HashMap.tableSizeFor(capacity)); // 创建map, 检查是不是LinkedHashSet类型map = (((HashSet>)this) instanceof LinkedHashSet ?new LinkedHashMap (capacity, loadFactor) :new HashMap (capacity, loadFactor)); // 读入所有元素, 并放入map中for (int i=0; i spliterator() {return new HashMap.KeySpliterator (map, 0, -1, 0, 0); }}
小结
- HashSet内部使用HashMap的key存储元素,以此来保证元素不重复;
- HashSet是无序的,因为HashMap的key是无序的;
- HashSet中允许有一个null元素,因为HashMap允许key为null;
- HashSet是非线程安全的;HashSet是没有get()方法的;
扩展:当向HashMap中存储n个元素时,它的初始化容量应指定为:((n/0.75f) + 1),如果这个值小于16,就直接使用16为容量。初始化时指定容量是为了减少扩容的次数,提高效率。
LinkedHashSet分析
package java.util; // LinkedHashSet继承自HashSetpublic class LinkedHashSetextends HashSet implements Set , Cloneable, java.io.Serializable {private static final long serialVersionUID = -2851667679971038690L; // 传入容量和装载因子public LinkedHashSet(int initialCapacity, float loadFactor) {super(initialCapacity, loadFactor, true); }// 只传入容量, 装载因子默认为0.75public LinkedHashSet(int initialCapacity) {super(initialCapacity, .75f, true); }// 使用默认容量16, 默认装载因子0.75public LinkedHashSet() {super(16, .75f, true); }// 将集合c中的所有元素添加到LinkedHashSet中// 好奇怪, 这里计算容量的方式又变了// HashSet中使用的是Math.max((int) (c.size()/.75f) + 1, 16)// 这一点有点不得其解, 是作者偷懒?public LinkedHashSet(Collection extends E> c) {super(Math.max(2*c.size(), 11), .75f, true); addAll(c); }// 可分割的迭代器, 主要用于多线程并行迭代处理时使用@Overridepublic Spliterator spliterator() {return Spliterators.spliterator(this, Spliterator.DISTINCT | Spliterator.ORDERED); }}
- LinkedHashSet继承自HashSet,它的添加、删除、查询等方法都是直接用的HashSet的,唯一的不同就是它使用LinkedHashMap存储元素。
- LinkedHashSet是有序的,它是按照插入的顺序排序的。
- LinkedHashSet是不支持按访问顺序对元素排序的,只能按插入顺序排序。
// HashSet的构造方法HashSet(int initialCapacity, float loadFactor, boolean dummy) {map = new LinkedHashMap<>(initialCapacity, loadFactor); }
通过调用LinkedHashMap的构造方法初始化map,如下所示:
public LinkedHashMap(int initialCapacity, float loadFactor) {super(initialCapacity, loadFactor); accessOrder = false; }
总结 【JDK源码之Vector与HashSet解析】这样可以看到,这里把accessOrder写死为false了,所以,LinkedHashSet是不支持按访问顺序对元素排序的,只能按插入顺序排序。还请大家多多关注脚本之家的其他文章!
推荐阅读
- PMSJ寻平面设计师之现代(Hyundai)
- 太平之莲
- 闲杂“细雨”
- 七年之痒之后
- 深入理解Go之generate
- 由浅入深理解AOP
- 期刊|期刊 | 国内核心期刊之(北大核心)
- 生活随笔|好天气下的意外之喜
- 感恩之旅第75天
- python学习之|python学习之 实现QQ自动发送消息