RNA-seq(8):|RNA-seq(8): 探索分析结果:Data visulization

写在前面: 这部分主要做一些数据可视化,富集分析暂时放下一部分,如果想跳过这里,请直接移步RNA-seq(9):富集分析
--------------------------------------------------- 参考资料:
Analyzing RNA-seq data with DESeq2
[Count-Based Differential Expression Analysis of RNA-seq Data]
1 MA plot

An MA plot is an application of a Bland–Altman plot for visual representation of genomic data. The plot visualizes the differences between measurements taken in two samples, by transforming the data onto M (log ratio) and A (mean average) scales, then plotting these values. Though originally applied in the context of two channel DNA microarray gene expression data, MA plots are also used to visualise high-throughput sequencing analysis.
MA这部分代码主要参考hoptop,并进行修改
In DESeq2, the function plotMA shows the log2 fold changes attributable to a given variable over the mean of normalized counts for all the samples in the DESeqDataSet. Points will be colored red if the adjusted p value is less than 0.1. Points which fall out of the window are plotted as open triangles pointing either up or down.
  • 没有经过 statistical moderation平缓log2 fold changes的情况
plotMA(res,ylim=c(-2,2)) topGene <- rownames(res)[which.min(res$padj)] with(res[topGene, ], { points(baseMean, log2FoldChange, col="dodgerblue", cex=6, lwd=2) text(baseMean, log2FoldChange, topGene, pos=2, col="dodgerblue") })

结果如下:

RNA-seq(8):|RNA-seq(8): 探索分析结果:Data visulization
文章图片
mean of normalized counts.jpeg
  • 经过lfcShrink 收缩log2 fold change
It is more useful visualize the MA-plot for the shrunken log2 fold changes, which remove the noise associated with log2 fold changes from low count genes without requiring arbitrary filtering thresholds.
注意:前面res结果已经按padj排序了,所以这次要按照行名升序再排列回来,否则和dds不一致
res_order<-res[order(row.names(res)),] res = res_order

res.shrink <- lfcShrink(dds, contrast = c("condition","treat","control"), res=res) plotMA(res.shrink, ylim = c(-5,5)) topGene <- rownames(res)[which.min(res$padj)] with(res[topGene, ], { points(baseMean, log2FoldChange, col="dodgerblue", cex=2, lwd=2) text(baseMean, log2FoldChange, topGene, pos=2, col="dodgerblue") })

RNA-seq(8):|RNA-seq(8): 探索分析结果:Data visulization
文章图片
mean of normalized count _shrinked.jpeg 2 Plot counts DESeq2提供了一个plotCounts()函数来查看某一个感兴趣的gene在组间的差别。counts会根据groups分组。更多的参数请输入命令?plotCounts下面我们来看plot两个genes
  • 一个是padj最小的gene
  • 一个是
    直接用plotCounts命令
# 不画图,只显示数据 plotCounts(dds, gene=which.min(res$padj), intgroup="condition", returnData=https://www.it610.com/article/TRUE) #只画图,不显示数据 plotCounts(dds, gene="ENSMUSG00000024045", intgroup="condition", returnData=https://www.it610.com/article/FAULSE)

下面用ggplot来画Akap8的box图和point图
  • boxplot
# Plot it plotCounts(dds, gene="ENSMUSG00000024045", intgroup="condition", returnData=https://www.it610.com/article/TRUE) %>% ggplot(aes(condition, count)) + geom_boxplot(aes(fill=condition)) + scale_y_log10() + ggtitle("Akap8")

RNA-seq(8):|RNA-seq(8): 探索分析结果:Data visulization
文章图片
boxplot_Akap8.jpeg
  • point plot
d <- plotCounts(dds, gene="ENSMUSG00000024045", intgroup="condition", returnData=https://www.it610.com/article/TRUE) ggplot(d, aes(x=condition, y=count)) + geom_point(aes(color= condition),size= 4, position=position_jitter(w=0.5,h=0)) + scale_y_log10(breaks=c(25,100,400))+ ggtitle("Akap8")

RNA-seq(8):|RNA-seq(8): 探索分析结果:Data visulization
文章图片
Rplot.jpeg 3 PCA(principal components analysis)
  • 上面的分析,我们使用的原始的counts数据。但是又一些下游其他分析比如热图(heatmap), PCA或聚类(clustering)我们需要data的转换后的格式,因为如何最好的计算未转换的counts的距离测度仍然不清楚。一个选择是进行log变换。但是因为很多samples的count为0(这意味着 log(0)=?∞,当然也可以使用家counts,比如y=log(n+1)或更普遍使用的y=log(n+n0 ),n代表count值,n0是某个正常数。
    但是也有一些其他的方法提供更好的理论矫正,其中有一个称为variance stabilizing transformation(VST),它消除了方差对mean均值的依赖,尤其是低均值时的高log counts的变异。
  • DESeq2提供了plotPCA函数进行PCA分析。?plotPCA查看帮助文件。
    用法如下
vsdata <- vst(dds, blind=FALSE) plotPCA(vsdata, intgroup="condition")

RNA-seq(8):|RNA-seq(8): 探索分析结果:Data visulization
文章图片
PCA.jpeg 4热图:两部分 4.1 count matrix 热图
根据不同的数据转换方式,可以产生不同类型的heatmap
library("pheatmap") select<-order(rowMeans(counts(dds, normalized = TRUE)), decreasing = TRUE)[1:20] df <- as.data.frame(colData(dds)[,c("condition","sizeFactor")])

# this gives log2(n + 1) ntd <- normTransform(dds) pheatmap(assay(ntd)[select,], cluster_rows=FALSE, show_rownames=FALSE, cluster_cols=FALSE, annotation_col=df)

【RNA-seq(8):|RNA-seq(8): 探索分析结果:Data visulization】上面这两幅图看起来没什么区别,我暂且只放一张

RNA-seq(8):|RNA-seq(8): 探索分析结果:Data visulization
文章图片
heatmap_ntd.jpeg 4.2 sample-to-sample distances热图
  • 转换数据还可以做出样本聚类热图。用dist函数来获得sample-to-sample距离。距离矩阵热图中可以清楚看到samples之间的相似与否的总概。需要给heatmap函数基于sample距离提供等级聚类hc。
#sample to sample heatmap sampleDists <- dist(t(assay(vsd))) library("RColorBrewer") sampleDistMatrix <- as.matrix(sampleDists) rownames(sampleDistMatrix) <- paste(vsd$condition, vsd$type, sep="-") colnames(sampleDistMatrix) <- NULL colors <- colorRampPalette( rev(brewer.pal(9, "Blues")) )(255) pheatmap(sampleDistMatrix, clustering_distance_rows=sampleDists, clustering_distance_cols=sampleDists, col=colors)

RNA-seq(8):|RNA-seq(8): 探索分析结果:Data visulization
文章图片
sample-to-sample-heatmap.jpeg

    推荐阅读