一文教你用python编写Dijkstra算法进行机器人路径规划
目录
- 前言
- 一、算法原理
- 二、程序代码
- 三、运行结果
- 四、 A*算法:Djikstra算法的改进
- 总结
前言 为了机器人在寻路的过程中避障并且找到最短距离,我们需要使用一些算法进行路径规划(Path Planning),常用的算法有Djikstra算法、A*算法等等,在github上有一个非常好的项目叫做PythonRobotics,其中给出了源代码,参考代码,可以对Djikstra算法有更深的了解。
一、算法原理
文章图片
如图所示,Dijkstra算法要解决的是一个有向权重图中最短路径的寻找问题,图中红色节点1代表起始节点,蓝色节点6代表目标结点。箭头上的数字代表两个结点中的的距离,也就是模型中所谓的代价(cost)。
贪心算法需要设立两个集合,open_set(开集)和closed_set(闭集),然后根据以下程序进行操作:
- 把初始结点放入到open_set中;
- 把open_set中代价最小的节点取出来放入到closed_set中,并且作为当前节点;
- 把与当前节点相邻的节点放入到open_set中,如果代价更小更新代价
- 重复2-3过程,直到找到终点。
至于为什么closed_set中的代价是最小的,是因为我们使用了贪心算法,既然已经把节点加入到了close中,那么初始点到close节点中的距离就比到open中的距离小了,无论如何也不可能找到比它更小的了。
二、程序代码
"""Grid based Dijkstra planningauthor: Atsushi Sakai(@Atsushi_twi)"""import matplotlib.pyplot as pltimport mathshow_animation = Trueclass Dijkstra:def __init__(self, ox, oy, resolution, robot_radius):"""Initialize map for a star planningox: x position list of Obstacles [m]oy: y position list of Obstacles [m]resolution: grid resolution [m]rr: robot radius[m]"""self.min_x = Noneself.min_y = Noneself.max_x = Noneself.max_y = Noneself.x_width = Noneself.y_width = Noneself.obstacle_map = Noneself.resolution = resolutionself.robot_radius = robot_radiusself.calc_obstacle_map(ox, oy)self.motion = self.get_motion_model()class Node:def __init__(self, x, y, cost, parent_index):self.x = x# index of gridself.y = y# index of gridself.cost = costself.parent_index = parent_index# index of previous Nodedef __str__(self):return str(self.x) + "," + str(self.y) + "," + str(self.cost) + "," + str(self.parent_index)def planning(self, sx, sy, gx, gy):"""dijkstra path searchinput:s_x: start x position [m]s_y: start y position [m]gx: goal x position [m]gx: goal x position [m]output:rx: x position list of the final pathry: y position list of the final path"""start_node = self.Node(self.calc_xy_index(sx, self.min_x),self.calc_xy_index(sy, self.min_y), 0.0, -1)goal_node = self.Node(self.calc_xy_index(gx, self.min_x),self.calc_xy_index(gy, self.min_y), 0.0, -1)open_set, closed_set = dict(), dict()open_set[self.calc_index(start_node)] = start_nodewhile 1:c_id = min(open_set, key=lambda o: open_set[o].cost)current = open_set[c_id]# show graphif show_animation:# pragma: no coverplt.plot(self.calc_position(current.x, self.min_x),self.calc_position(current.y, self.min_y), "xc")# for stopping simulation with the esc key.plt.gcf().canvas.mpl_connect('key_release_event',lambda event: [exit(0) if event.key == 'escape' else None])if len(closed_set.keys()) % 10 == 0:plt.pause(0.001)if current.x == goal_node.x and current.y == goal_node.y:print("Find goal")goal_node.parent_index = current.parent_indexgoal_node.cost = current.costbreak# Remove the item from the open setdel open_set[c_id]# Add it to the closed setclosed_set[c_id] = current# expand search grid based on motion modelfor move_x, move_y, move_cost in self.motion:node = self.Node(current.x + move_x,current.y + move_y,current.cost + move_cost, c_id)n_id = self.calc_index(node)if n_id in closed_set:continueif not self.verify_node(node):continueif n_id not in open_set:open_set[n_id] = node# Discover a new nodeelse:if open_set[n_id].cost >= node.cost:# This path is the best until now. record it!open_set[n_id] = noderx, ry = self.calc_final_path(goal_node, closed_set)return rx, rydef calc_final_path(self, goal_node, closed_set):# generate final courserx, ry = [self.calc_position(goal_node.x, self.min_x)], [self.calc_position(goal_node.y, self.min_y)]parent_index = goal_node.parent_indexwhile parent_index != -1:n = closed_set[parent_index]rx.append(self.calc_position(n.x, self.min_x))ry.append(self.calc_position(n.y, self.min_y))parent_index = n.parent_indexreturn rx, rydef calc_position(self, index, minp):pos = index * self.resolution + minpreturn posdef calc_xy_index(self, position, minp):return round((position - minp) / self.resolution)def calc_index(self, node):return (node.y - self.min_y) * self.x_width + (node.x - self.min_x)def verify_node(self, node):px = self.calc_position(node.x, self.min_x)py = self.calc_position(node.y, self.min_y)if px < self.min_x:return Falseif py < self.min_y:return Falseif px >= self.max_x:return Falseif py >= self.max_y:return Falseif self.obstacle_map[node.x][node.y]:return Falsereturn Truedef calc_obstacle_map(self, ox, oy):self.min_x = round(min(ox))self.min_y = round(min(oy))self.max_x = round(max(ox))self.max_y = round(max(oy))print("min_x:", self.min_x)print("min_y:", self.min_y)print("max_x:", self.max_x)print("max_y:", self.max_y)self.x_width = round((self.max_x - self.min_x) / self.resolution)self.y_width = round((self.max_y - self.min_y) / self.resolution)print("x_width:", self.x_width)print("y_width:", self.y_width)# obstacle map generationself.obstacle_map = [[False for _ in range(self.y_width)]for _ in range(self.x_width)]for ix in range(self.x_width):x = self.calc_position(ix, self.min_x)for iy in range(self.y_width):y = self.calc_position(iy, self.min_y)for iox, ioy in zip(ox, oy):d = math.hypot(iox - x, ioy - y)if d <= self.robot_radius:self.obstacle_map[ix][iy] = Truebreak@staticmethoddef get_motion_model():# dx, dy, costmotion = [[1, 0, 1],[0, 1, 1],[-1, 0, 1],[0, -1, 1],[-1, -1, math.sqrt(2)],[-1, 1, math.sqrt(2)],[1, -1, math.sqrt(2)],[1, 1, math.sqrt(2)]]return motiondef main():print(__file__ + " start!!")# start and goal positionsx = -5.0# [m]sy = -5.0# [m]gx = 50.0# [m]gy = 50.0# [m]grid_size = 2.0# [m]robot_radius = 1.0# [m]# set obstacle positionsox, oy = [], []for i in range(-10, 60):ox.append(i)oy.append(-10.0)for i in range(-10, 60):ox.append(60.0)oy.append(i)for i in range(-10, 61):ox.append(i)oy.append(60.0)for i in range(-10, 61):ox.append(-10.0)oy.append(i)for i in range(-10, 40):ox.append(20.0)oy.append(i)for i in range(0, 40):ox.append(40.0)oy.append(60.0 - i)if show_animation:# pragma: no coverplt.plot(ox, oy, ".k")plt.plot(sx, sy, "og")plt.plot(gx, gy, "xb")plt.grid(True)plt.axis("equal")dijkstra = Dijkstra(ox, oy, grid_size, robot_radius)rx, ry = dijkstra.planning(sx, sy, gx, gy)if show_animation:# pragma: no coverplt.plot(rx, ry, "-r")plt.pause(0.01)plt.show()if __name__ == '__main__':main()
三、运行结果
文章图片
四、 A*算法:Djikstra算法的改进 Dijkstra算法实际上是贪心搜索算法,算法复杂度为O( n 2 n^2 n2),为了减少无效搜索的次数,我们可以增加一个启发式函数(heuristic),比如搜索点到终点目标的距离,在选择open_set元素的时候,我们将cost变成cost+heuristic,就可以给出搜索的方向性,这样就可以减少南辕北辙的情况。我们可以run一下PythonRobotics中的Astar代码,得到以下结果:
文章图片
总结 【一文教你用python编写Dijkstra算法进行机器人路径规划】到此这篇关于python编写Dijkstra算法进行机器人路径规划的文章就介绍到这了,更多相关python写Dijkstra算法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
推荐阅读
- 一个人的旅行,三亚
- 一个小故事,我的思考。
- 《真与假的困惑》???|《真与假的困惑》??? ——致良知是一种伟大的力量
- 开学第一天(下)
- 一个人的碎碎念
- 2018年11月19日|2018年11月19日 星期一 亲子日记第144篇
- 遇到一哭二闹三打滚的孩子,怎么办┃山伯教育
- 第326天
- Y房东的后半生14
- 奔向你的城市