用Python绘制移动均线【含源代码】
文章图片
上一篇《用Python绘制专业的K线图》,讲解了数据获取、K线图绘制及成交量绘制等内容。本篇将在上一篇的基础上,继续讲解移动均线的绘制。
1、获取数据
我们从恒有数金融数据社区,获取股票市场历史行情数据。我们获取2021年3月1号至2021年6月1号,恒生电子(600570.SH)的日行情数据,并做简单处理,代码及执行结果如下。
# 加载取数与绘图所需的函数包
import pandas as pd
import datetime
from hs_udata import set_token,stock_quote_daily
from mpl_finance import candlestick_ohlc
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
mpl.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体
mpl.rcParams['axes.unicode_minus'] = False# 解决保存图像是负号'-'显示为方块的问题def GetData(stock_code,start,end):
#stock_code:获取股票数据的股票代码
#start:开始日期
#end:结束日期
date_start=datetime.datetime.strptime(start,'%Y-%m-%d')
date_end=datetime.datetime.strptime(end,'%Y-%m-%d')
data = https://www.it610.com/article/pd.DataFrame([])
while date_start
文章图片
2、计算移动均线
#3、计算均值
data_price['MA5']=data_price['close_price'].rolling(window=5).mean()
data_price['MA10']=data_price['close_price'].rolling(window=10).mean()
data_price['MA20']=data_price['close_price'].rolling(window=20).mean()
data_price
文章图片
3、绘制K线及移动均线 将绘制移动均线的代码,添加至K线图绘制代码中;源代码及绘制图片如下:
#4、绘制图片
fig = plt.figure(figsize=(12,10))
grid = plt.GridSpec(12, 10, wspace=0.5, hspace=0.5)
#(1)绘制K线图
# K线数据
ohlc = data_price[['Date','open_price','high_price','low_price','close_price']]
ohlc.loc[:,'Date'] = range(len(ohlc))# 重新赋值横轴数据,绘制K线图无间隔
# 绘制K线
ax1 = fig.add_subplot(grid[0:8,0:12])# 设置K线图的尺寸
candlestick_ohlc(ax1, ohlc.values.tolist(), width=.7
, colorup='red', colordown='green')
# (2)绘制均线
ax1.plot(range(len(data_price)), data_price['MA5']
, color='red', lw=2, label='MA (5)')
ax1.plot(range(len(data_price)), data_price['MA10']
, color='blue', lw=2, label='MA (10)')
ax1.plot(range(len(data_price)), data_price['MA20']
, color='green', lw=2, label='MA (20)')
# 设置标注
plt.title(stock_code,fontsize = 14)# 设置图片标题
plt.ylabel('价 格(元)',fontsize = 14)# 设置纵轴标题
plt.legend(loc='best')# 绘制图例
ax1.set_xticks([])# 日期标注在成交量中,故清空此处x轴刻度
ax1.set_xticklabels([])# 日期标注在成交量中,故清空此处x轴 #(3)绘制成交量
# 成交量数据
data_volume = data_price[['Date','close_price','open_price','business_amount']]
data_volume['color'] = data_volume.apply(lambda row: 1 if row['close_price'] >= row['open_price'] else 0, axis=1)# 计算成交量柱状图对应的颜色,使之与K线颜色一致
data_volume.Date = ohlc.Date
# 绘制成交量
ax2 = fig.add_subplot(grid[8:10,0:12])# 设置成交量图形尺寸
ax2.bar(data_volume.query('color==1')['Date']
, data_volume.query('color==1')['business_amount']
, color='r')# 绘制红色柱状图
ax2.bar(data_volume.query('color==0')['Date']
, data_volume.query('color==0')['business_amount']
, color='g')# 绘制绿色柱状图
plt.xticks(rotation=30)
plt.xlabel('日 期',fontsize = 14)# 设置横轴标题
# 修改横轴日期标注
date_list = ohlc.index.tolist()# 获取日期列表
xticks_len = round(len(date_list)/(len(ax2.get_xticks())-1))# 获取默认横轴标注的间隔
xticks_num = range(0,len(date_list),xticks_len)# 生成横轴标注位置列表
xticks_str = list(map(lambda x:date_list[int(x)],xticks_num))# 生成正在标注日期列表
ax2.set_xticks(xticks_num)# 设置横轴标注位置
ax2.set_xticklabels(xticks_str)# 设置横轴标注日期
plt.show()
【用Python绘制移动均线【含源代码】】
文章图片
推荐阅读
- Docker应用:容器间通信与Mariadb数据库主从复制
- JS中的各种宽高度定义及其应用
- 由浅入深理解AOP
- 【译】20个更有效地使用谷歌搜索的技巧
- 涉毒患者(新诗)
- 参保人员因患病来不及到指定的医疗机构就医,能否报销医疗费用()
- mybatisplus如何在xml的连表查询中使用queryWrapper
- MybatisPlus|MybatisPlus LambdaQueryWrapper使用int默认值的坑及解决
- MybatisPlus使用queryWrapper如何实现复杂查询
- python学习之|python学习之 实现QQ自动发送消息