pytorch|深度学习基础--SOFTMAX回归(单层神经网络)

深度学习基础–SOFTMAX回归(单层神经网络) 最近在阅读一本书籍–Dive-into-DL-Pytorch(动手学深度学习),链接:https://github.com/newmonkey/Dive-into-DL-PyTorch,自身觉得受益匪浅,在此记录下自己的学习历程。
本篇主要记录关于SOFTMAX回归的知识。softmax回归和线性回归一样都属于单层神经网络;线性回归主要适用于回归问题,而softmax回归主要使用于分类问题。本文主要尝试对手写数字进行识别。sofemax函数又叫归一化指数函数。
1 收集数据集 我们通过torchvision的 torchvision.datasets 来下载这个手写数字识别数据集MNIST。可以获得60000个训练集样本数与10000个测试集样本数。

import torch import torchvision import numpy as npdef load_data_fashion_mnist(batch_size, root='本地地址url'): transform = torchvision.transforms.ToTensor() mnist_train = torchvision.datasets.MNIST(root=root, train=True, download=True, transform=transform) mnist_test = torchvision.datasets.MNIST(root=root, train=False, download=True, transform=transform) train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True) test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False) return train_iter,test_iterbatch_size=256 train_iter,test_iter=load_data_fashion_mnist(batch_size)

2 定义和初始化模型 每个样本的shape为[1,28,28],即通道数为1,高和宽都为为28像素的图像。故模型的输入向量的长度是784。softmax回归的输出层是?个全连接层,所以我们??个线性模块就可以了。
import torch.nn as nn num_inputs = 784 num_outputs = 10 class LinearNet(nn.Module): def __init__(self, num_inputs, num_outputs): super(LinearNet, self).__init__() self.linear = nn.Linear(num_inputs, num_outputs) def forward(self, x): # x shape: (batch, 1, 28, 28) y = self.linear(x.view(x.shape[0], -1)) return y net = LinearNet(num_inputs, num_outputs) print(net)init.normal_(net.linear.weight, mean=0, std=0.01) init.constant_(net.linear.bias, val=0)

3 sofemax和交叉熵损失函数 PyTorch提供了?个包括softmax运算和交叉熵损失计算的函数。
loss=nn.CrossEntropyLoss()

4 定义优化算法 采用学习率为0.005的?批量随机梯度下降(SGD)为优化算法。
optimizer = torch.optim.SGD(net.parameters(), lr=0.005)

5 训练模型 迭代周期设置为10,模型训练。
num_epochs = 10 def evaluate_accuracy(data_iter, net): acc_sum, n = 0.0, 0 for X, y in data_iter: acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() n += y.shape[0] return acc_sum / ndef train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,params=None, lr=None, optimizer=None): for epoch in range(num_epochs): train_l_sum, train_acc_sum, n = 0.0, 0.0, 0 for X, y in train_iter: y_hat = net(X) l = loss(y_hat, y).sum()# 梯度清零 if optimizer is not None: optimizer.zero_grad() elif params is not None and params[0].grad is not None: for param in params: param.grad.data.zero_()l.backward() if optimizer is None: sgd(params, lr, batch_size) else: optimizer.step()# “softmax回归的简洁实现”一节将用到train_l_sum += l.item() train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item() n += y.shape[0] test_acc = evaluate_accuracy(test_iter, net) print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'% (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))train_ch3(net, train_iter, test_iter, loss, num_epochs,batch_size, None, None, optimizer) #结果 #epoch 1, loss 0.0071, train acc 0.675, test acc 0.788 #epoch 2, loss 0.0050, train acc 0.795, test acc 0.821 #epoch 3, loss 0.0040, train acc 0.819, test acc 0.837 #epoch 4, loss 0.0034, train acc 0.832, test acc 0.846 #epoch 5, loss 0.0031, train acc 0.841, test acc 0.855 #epoch 6, loss 0.0028, train acc 0.848, test acc 0.860 #epoch 7, loss 0.0026, train acc 0.853, test acc 0.865 #epoch 8, loss 0.0025, train acc 0.857, test acc 0.868 #epoch 9, loss 0.0024, train acc 0.860, test acc 0.871 #epoch 10, loss 0.0023, train acc 0.863, test acc 0.874

6 预测 训练完成后,现在就可以演示如何对图像进?分类了。第??为真实标签,第??为预测标签,第三行为图像。
from IPython import display import matplotlib.pyplot as plt X, y = iter(test_iter).next() def get_fashion_mnist_labels(labels): text_labels = ['0', '1', '2', '3', '4','5', '6', '7', '8', '9'] return [text_labels[int(i)] for i in labels]def show_fashion_mnist(images, labels): #use_svg_display() display.display_svg() # 这?的_表示我们忽略(不使?)的变量 _, figs = plt.subplots(1, len(images), figsize=(12, 12)) for f, img, lbl in zip(figs, images, labels): f.imshow(img.view((28, 28)).numpy()) f.set_title(lbl) f.axes.get_xaxis().set_visible(False) f.axes.get_yaxis().set_visible(False) plt.show()true_labels = get_fashion_mnist_labels(y.numpy()) pred_labels =get_fashion_mnist_labels(net(X).argmax(dim=1).numpy()) titles = [true + '\n' + pred for true, pred in zip(true_labels,pred_labels)] show_fashion_mnist(X[0:20], titles[0:20])

【pytorch|深度学习基础--SOFTMAX回归(单层神经网络)】预测结果展示:(第??为真实标签,第??为预测标签,第三行为图像)
pytorch|深度学习基础--SOFTMAX回归(单层神经网络)
文章图片

END!

    推荐阅读