神经|英特尔下一个时代的『CPU』,10倍以上性能提升,1000倍能耗降低( 三 )
“神经拟态架构比其他架构更能够从Intel4预生产过程中受益。”Mike表示。
不过,要解决更多实际问题还需要用Loihi2构建系统。为此,Loihi2的扩展能力也进行了提升,有了4倍速度的接口,还新增了两个接口,可以在3个维度上进行扩展。
文章插图
同时,Loihi2对芯片间的连接进行了压缩,让许多工作负载的扩展提供了10倍以上的带宽,在减少拥堵和该架构扩展到更大网络的能力方面,综合提高了60倍以上。
文章插图
总体而言,Loihi2的诸多改进,是为了减少支持相同程度能力所需的网络规模,从而获得更快的处理速度和更低的功耗。
软件是神经拟态芯片大规模商用的关键
“Loihi 2与第一代一样,属于通用的神经拟态架构。展望未来,我们希望能构建一种新的可编程处理器架构,类似CPU或GPU,不针对特定的应用,适合用于填充组合技术。”Mike展望。
纵观成功的CPU和GPU,都有非常易于使用软件及软件生态。显然,神经拟态计算芯片想要成为像CPU一样的通用芯片,软件非常关键。
Mike也说,“过去三年使用Loihi的过程,我们吸取到一个重要经验,软件对神经拟态领域进展的限制和硬件一样关键。”
文章插图
此前,想要使用神经拟态芯片,都需要从头开始开发软件,这就像每个人都在重新创造世界。借鉴深度学习领域成功的TensorFlow和PyTorch,加上在神经拟态领域的经验和需求分析,英特尔专为神经拟态计算打造了开源软件框架Lava。
文章插图
Mike强调,“我们不会把Lava作为英特尔的一个成品发布给全世界使用,但这确实是与外界合作的起点。我们现在已经在GitHub上发布了这个软件框架,它借鉴了英特尔在这个领域观察到的东西,也借鉴了英特尔第一代软件开发获得的经验,也就是称之为NX软件开发工具包的NX SDK。”
开源框架Lava有一个重要特性,无论是将应用程序的成分映射到传统的CPU或GPU上,还是将其分解成神经过程然后运行在神经拟态芯片上都可以。
“在使用Loihi 2研究芯片时,仍然需要通过英特尔相关法律程序的批准,这对很多想要参与这项研究的人来说是一个障碍。”Mike表示,“我们将为Lava提供一个开源许可证,这意味着开发人员可以自由进入并将这个框架移植到其他神经拟态芯片上。这是关键的一步,能够扩大开源社区,并将所有这些探索神经拟态研究的不同方向的努力和付出汇集在一起,至少在软件层面,可以更快速地实现商用落地。”
雷锋网了解到,Lava使用的是Python语言,这在一定程度减轻了采用Lava的难度。
“我想说的是,构建算法的方式,对于巨大的芯片来说是比学习编程语言而言更困难的障碍。”Mike对雷锋网表示,“可以尝试轻松过渡到使用神经形态芯片,但我们认为最大的挑战还是当前编程所需要使用的特定语言。在未来,我们或其他为Lava做出贡献的人可能会引入新的语言或特定领域的语言,因为很明显它可以提高生产力。”
文章插图
写在最后
对于英特尔而言,全面的产品组合是其保持当下以及可见的未来竞争力的关键。而对神经拟态计算和量子计算的探索,则关乎长远未来的技术领导力。正如Mike所说,神经拟态计算的大规模商用还有很长一段路要走,但英特尔一旦商用神经拟态计算芯片,瞄准的是十亿美元的市场。
推荐阅读
- AMD市值首超英特尔,500亿买赛灵思是福还是祸?
- 投稿|英特尔的“付费解锁硬件性能”构想恐怕是个潘多拉魔盒
- 英特尔|惠普第八代游戏家族产品重磅首发,硬核升级助力玩家全速出击
- gpu|英特尔独立显卡第一季度上市,台式机独显第二季度见
- 加速器|英特尔将推出Arctic Sound-M加速卡 用于服务器领域
- 台式机|i9强无敌,笔记本硬刚台式机,曾经的那个英特尔,它又回来了?
- 英特尔|英特尔CEO:有意组财团买下ARM
- 英伟达|英特尔代工再发力,称有兴趣参与收购Arm
- 基辛格|英特尔CEO:有意组财团买下ARM
- 投稿|华润的“酒局”:寻找下一个汾酒