Lost|Lost Cows(线段树+二分判定)
4835: [Usaco2003 Open]Lost Cows
Time Limit: 1 SecMemory Limit: 128 MB
Submit: 21Solved: 17
[Submit][Status][Web Board] Description N (2 <= N <= 8,000) cows have unique brands in the range 1..N. In a spectacular display of poor judg
ment, they visited the neighborhood 'watering hole' and drank a few too many beers before dinner. Wh
en it was time to line up for their evening meal, they did not line up in the required ascending num
erical order of their brands.Regrettably, FJ does not have a way to sort them. Furthermore, he's not
very good at observing problems. Instead of writing down each cow's brand, he determined a rather s
illy statistic: For each cow in line, he knows the number of cows that precede that cow in line that
do, in fact, have smaller brands than that cow.Given this data, tell FJ the exact ordering of the c
ows.
1~n,乱序排列,告诉每个位置的前面的数字中比它小的数的个数,求每个位置的数字是多少Input * Line 1: A single integer, N
* Lines 2..N: These N-1 lines describe the number of cows that precede a given cow in line and have
brands smaller than that cow. Of course, no cows precede the first cow in line, so she is not listed
. Line 2 of the input describes the number of preceding cows whose brands are smaller than the cow i
n slot #2;
line 3 describes the number of preceding cows whose brands are smaller than the cow in sl
ot #3;
and so on. Output * Lines 1..N: Each of the N lines of output tells the brand of a cow in line.
Line #1 of the output tells the brand of the first cow in line;
line 2 tells the brand of the second cow;
and so on.Sample Input
5 1 2 1 0
Sample Output
2 4 5 3 1
#include#include #include using namespace std; const int maxn=8000+10; int tree[maxn<<2]; int a[maxn],n; int ans[maxn]; void pushup(int x){ tree[x]=tree[x<<1]+tree[x<<1|1]; }void change(int l,int r,int rt,int R,int c){ if(l==r) { tree[rt]+=c; return ; } int mid=(l+r)>>1; if(R<=mid) change(l,mid,rt<<1,R,c); else change(mid+1,r,rt<<1|1,R,c); pushup(rt); }int ask(int l,int r,int rt,int L,int R){ if(l>=L&&r<=R) return tree[rt]; int mid=(l+r)>>1; int ans=0; if(L<=mid) ans+=ask(l,mid,rt<<1,L,R); if(R>mid) ans+=ask(mid+1,r,rt<<1|1,L,R); return ans; }int solve(int x){ int l=1,r=n; while(l<=r) { int mid=(l+r)/2; if(ask(1,n,1,1,mid) >1; build(l,mid,rt<<1); build(mid+1,r,rt<<1|1); pushup(rt); }int main(){ scanf("%d",&n); for (int i=2; i<=n; i++){ scanf("%d",&a[i]); } int top=0; build(1,n,1); for (int i=n; i>=1; i--){ ans[i]=solve(a[i]+1); change(1,n,1,ans[i],-1); } for (int i=1; i<=n; i++) printf("%d\n",ans[i]); return 0; }
【Lost|Lost Cows(线段树+二分判定)】转载于:https://www.cnblogs.com/lmjer/p/9194976.html
推荐阅读
- ~
- 用Java实现线段树
- 题目|C. Ayoub and Lost Array(思维dp)
- 线段树|[类欧几里得算法 线段树] BZOJ 1938 [CROATIAN2010] ALADIN
- Cohen-Sutherland线段裁剪算法
- 题库-CF|【Codeforces Round 370 (Div 2) E】【线段树 等比数列 区间合并】Memory and Casinos 赌场区间[l,r] l进r先出的概率
- 牛客 C. 子段乘积(线段树)
- 牛客挑战赛39 C 牛牛的等差数列(线段树)(*)
- 牛客挑战赛39(A(枚举+递增+二分),B(二分+hash),C(线段树-等差数组),E(杨辉三角组合数))
- 校门外的树 线段树版