CUDA|关于thrust的使用的一些总结

void gpuInit() { cudaSetDevice(0); thrust::host_vector m(5); //主机向量 thrust::sequence(m.begin(),m.end()); //顺序插入数0 1 2 3 .... thrust::device_vector d_v(5); //设备向量 thrust::device_vector d_vv(5); //二维设备向量 double A[5][4]; for(int i = 0; i < 5; ++i) { for(int j = 0; j < 4; ++j) { A[i][j] = i + j; } } for(int i = 0; i < 5; ++i) { d_vv[i] = A[i]; //给二维向量设备向量赋值 } std::cout << "device_vector is size = " << d_vv.size() << std::endl; for(int i = 0; i < 5; ++i) { for(int j = 0; j < 4; ++j) { std::cout << "d_vv[" << i << "][" << j << "] = " << d_vv[i][j]<< " "; } std::cout << std::endl; } d_v = m; //内存数据复制到显存里,一维数据比较好用 for(int i = 0; i < m.size() ; ++i) { std::cout << "m[i] = " << m[i] << ""; } std::cout << std::endl; for(int i = 0; i < 5 ; ++i) { std::cout << "d_v = " << d_v[i] << ""; } std::cout << std::endl; thrust::host_vector > h(5,thrust::host_vector(5)); //主机的二维向量可以这样申请,设备的就不行尝试了好多都不行 std::cout <<"host_vector to device:" << std::endl; std::cout << "device_vector is size = " << d_vv.size() << std::endl; for(int i = 0; i < 5; ++i) { for(int j = 0; j < 5; ++j) { std::cout << "d_vv[" << i << "][" << j << "] = " << d_vv[i][j]<< " "; } std::cout << std::endl; } std::cout << "host_vector is size = " << h.size() << std::endl; for(int i = 0; i < 5; ++i) { for(int j = 0; j < 5; ++j) { std::cout << h[i][j] << ""; } std::cout << std::endl; } }

【CUDA|关于thrust的使用的一些总结】

    推荐阅读