动态规划(求解最长递增子序列(LIS))

题目1: 【动态规划(求解最长递增子序列(LIS))】 一个序列有N个数A[1],A[2],…,A[N],求出最长非降子序列的长度。 (DP经典问题LIS:longest increasing subsequence)
注意:此处的子序列不一定是连续的,这跟最大连续子序列求和不一样! 分析:最长非降子序列本身也是一个序列,那么它肯定以某个A[i]结尾。我们定义d(i),表示前0~i个数的最长非降子序列的长度,并且这个最长非降子序列的结尾元素必须是A[i],则动态规划转移方程为:

d(i) = max{1, d(j)+1},其中j

即想要求d(i),就把i前面的各个子序列中, 最后一个数不大于A[i]的序列长度加1,然后取出最大的长度即为d(i)。 当然了,有可能i前面的各个子序列中最后一个数都大于A[i],那么d(i)=1, 即它自身成为一个长度为1的子序列。
#include using namespace std; int lis(int A[], int n){ int *d = new int[n]; int len = 1; for(int i=0; id[i]) d[i] = d[j] + 1; if(d[i]>len) len = d[i]; } delete[] d; return len; } int main(){ int A[] = { 5, 3, 4, 8, 6, 7 }; cout<

题目2: 平面上有N*M个格子,每个格子中放着一定数量的苹果。你从左上角的格子开始, 每一步只能向下走或是向右走,每次走到一个格子上就把格子里的苹果收集起来, 这样下去,你最多能收集到多少个苹果。
解这个问题与解其它的DP问题几乎没有什么两样。第一步找到问题的“状态”, 第二步找到“状态转移方程”,然后基本上问题就解决了。
首先,我们要找到这个问题中的“状态”是什么?我们必须注意到的一点是, 到达一个格子的方式最多只有两种:从左边来的(除了第一列)和从上边来的(除了第一行)。 因此为了求出到达当前格子后最多能收集到多少个苹果, 我们就要先去考察那些能到达当前这个格子的格子,到达它们最多能收集到多少个苹果。 (是不是有点绕,但这句话的本质其实是DP的关键:欲求问题的解,先要去求子问题的解)
经过上面的分析,很容易可以得出问题的状态和状态转移方程。 状态S[i][j]表示我们走到(i, j)这个格子时,最多能收集到多少个苹果。那么, 状态转移方程如下:
S[i][j]=A[i][j] + max(S[i-1][j], if i>0 ; S[i][j-1], if j>0)

其中i代表行,j代表列,下标均从0开始;A[i][j]代表格子(i, j)处的苹果数量。
S[i][j]有两种计算方式:1.以行循环,从左向右计算,然后从上到下逐行处理;2. 以列循环,从上到下计算,然后从左向右逐列处理。 这样做的目的是为了在计算S[i][j]时,S[i-1][j]和S[i][j-1]都已经计算出来了。



    推荐阅读